Crystal Growth & Design
Page 10 of 13
34. Zhu, C.; Yuan, G.; Chen, X.; Yang, Z.; Cui, Y. Chiral naꢀ
49. Argent, S. P.; Adams, H.; Johannessen, T. R.; Jeffery, J. C.;
noporous metal–metallosalen frameworks for hydrolytic
kinetic resolution of epoxides. J. Am. Chem. Soc., 2012,
134, 8058–8061.
Harding, L. P.; Clegg, W.; Harrington, R. W.; Ward, M. D.
Complexes of Ag(I), Hg(I) and Hg(II) with multidentate
pyrazolylꢀpyridine ligands: from mononuclear complexes
to coordination polymers via helicates, a mesocate, a cage
and a catenate. Dalton Trans., 2006, 0, 4996–5013.
1
2
3
4
35. Ren, Y.; Cheng, X.; Yang, S.; Qi, C.; Jiang, H.; Mao, Q. A
chiral mixed metal–organic framework based on
a
Ni(saldpen) metalloligand: synthesis, characterization and
catalytic performances. Dalton Trans., 2013, 42, 9930–
9937.
50. Zhang, J. P.; Kitagawa, S. Supramolecular isomerism,
framework flexibility, unsaturated metal center, and porous
5
6
7
8
property
of
Ag(I)/Cu(I)
3,3’,5,5’ꢀTetrametylꢀ4,4’ꢀ
36. Song, F.; Wang, C.; Falkowski, J. M.; Ma, L.; Lin, W. Isoꢀ
reticular chiral metalꢀorganic frameworks for asymmetric
alkene epoxidation: Tuning catalytic activity by controlling
framework catenation and varying open channel sizes. J.
Am. Chem. Soc., 2010, 132, 15390–15398.
37. Houk, R. J. T.; Jacobs, B. W.; Gabaly, F. E.; Chang, N. N.;
Talin, A. A.; Graham, D. D.; House, S. D.; Robertson, I.
M.; Allendorf, M. D. Silver cluster formation, dynamics,
and chemistry in metal–organic frameworks. Nano Lett.,
2009, 9, 3413–3418.
38. Shen, C.; Liu, Y.; Zhu, Z. Q.; Xu, Y. G.; Lu, M. Selfꢀ
assembly of silver(I)ꢀbased highꢀenergy metal–organic
frameworks (HEꢀMOFs) at ambient temperature and presꢀ
sure: synthesis, structure and superior explosive perforꢀ
mance. Chem. Commun., 2017, 53, 7489–7492.
Bipyrazolate. J. Am. Chem. Soc., 2008, 130, 907–917.
51. Ghosh, S.; Biswas, K.; Bhattacharya, S.; Ghosh, P.; Basu,
B. Effect of the orthoꢀhydroxy group of salicylaldehyde in
the A3 coupling reaction: A metalꢀcatalystꢀfree synthesis of
propargylamine. Beilstein J. Org. Chem., 2017, 13, 552–
557.
52. Zhu, N. X.; Zhao, C. W.; Yang, J.; Wang, X. R.; Ma, J. P.;
Dong, Y. B. Synthesis, structure and multifunctional cataꢀ
lytic properties of a Cu(I)ꢀcoordination polymer with outerꢀ
hanging CuBr2. RSC Adv., 2016, 6, 108645–108653
53. Saha, T. K.; Das, R. Progress in synthesis of propargylaꢀ
mine and its derivatives by nanoparticle catalysis via A3
coupling: A decade update. ChemistrySelect, 2018, 3, 147–
169
54. Jayaramulu, K.; Datta, K. K. R.; Suresh, M. V.; Kumari,
G.; Datta, R.; Narayana, C.; Eswaramoorthy, M.; Maji, T.
K. Honeycomb porous framework of Zn(II): Effective host
for palladium nanoparticles for efficient three component
(A3) coupling and selective gas storage. ChemPlusChem,
2012, 77, 743–747.
55. Loukopoulos, E.; Kallitsakis, M.; Tsoureas, N.; Sada, A.
A.; Chilton, N. F.; Lykakis, I. N.; Kostakis, G. E. Cu(II)
coordination polymers as vehicles in the A3 coupling. Inꢀ
org. Chem., 2017, 56, 4898–4910.
56. Dyker, G. Transition metal catalysed coupling reactions
under C–H activation. Angeo. Chem. Int. Ed., 1999, 38,
1698–1712.
57. Beriwal, J. B.; Ermolatev, D. S.; Eycken, E. V. V. Efficient
microwaveꢀassisted synthesis of seconalkyldary propargylꢀ
amines by using A3ꢀcoupling with primary aliphatic
amines. Chem. Eur. J., 2010, 16, 3281–3284.
58. Dulle, J.; Thirunavukkarasu,K.; Hazeleger, M. C. M.; Anꢀ
dreeva, D. V.; Shiju, N. R.; Rothenberg, G. Efficient threeꢀ
component coupling catalysed by mesoporous copper–
aluminum based nanocomposites. Green Chem., 2013, 15,
1238–1243.
59. Wang, M.; Li, P.; Wang, L. Silica immobilized NHC–
CuI complex: An efficient and reusable catalyst for
A3 coupling (aldehyde–alkyne–amine) under solventless
reaction conditions. Eur. J. Org. Chem., 2008, 2255–2261.
60. Wei, C.; Li, C. J. A highly efficient threeꢀcomponent couꢀ
pling of aldehyde, alkyne, and amines via C–H activation
catalyzed by gold in water. J. Am. Chem. Soc.,
2003, 125, 9584–9585.
61. Loukopoulos, E.; Kallitsakis, M.; Tsoureas, N.; Sada, A.
A., Chilton, N. F.; Lykakis, I. N.; Kostakis, G. E. Cu(II)
coordination polymers as vehicles in the A3 coupling. Inꢀ
org. Chem., 2017, 56, 4898–4910.
62. Xiong, X.; Chen, H.; Zhu, R. Highly efficient and scaleꢀup
synthesis of propargylamines catalyzed by graphene oxideꢀ
supported CuCl2 catalyst under microwave condition.
Catal. Commun., 2014, 54, 94–99.
63. Fang, G.; Bi, X. Silverꢀcatalysed reactions of alkynes: reꢀ
cent advances. Chem. Soc. Rev., 2015, 44, 8124–817.
64. Li, P.; Zhang, Y.; Wang, L. Ironꢀcatalyzed ligand free
three component coupling reactions of aldehydes, termiꢀ
nal alkynes, and amines. Chem. Eur. J., 2009, 15, 2045–
2049.
65. Aiken III, J D.; Finke, R. G. A review of modern transiꢀ
tionꢀmetal nanoclusters: their synthesis, characterization,
and applications in catalysis. J. Mol. Cat. A: Chem., 1999,
145, 1–44.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
39. Li, B.; Zang, S. Q.; Ji, C.; Hou, H. W.; Mak, T. C. W. Synꢀ
theses, structures, and properties of silver–organic frameꢀ
works
constructed
with
1,1′ꢀBiphenylꢀ2,2′,6,6′ꢀ
tetracarboxylic Acid. Cryst. Growth Des., 2012, 12,
1443−1451.
40. Steel, P. J.; Fitchett, C. M. Metallosupramolecular silver(I)
assemblies based on pyrazine and related ligands. Coord.
Chem. Rev., 2008, 252, 990–1006.
41. Che, C. M.; Tse, M. C.; Chan, M. C.; Cheung, K. K.; Philꢀ
lips, D. L.; Leung, K. H. Spectroscopic evidence for argenꢀ
tophilicity in structurally characterized luminescent binuꢀ
clear silver(I) complexes. J. Am. Chem. Soc., 2000, 122,
2464–2468.
42. Sun, D.; Wei, Z. H.; Yang, C. F.; Zhang, N.; Huang, R. B.;
Zheng, L. S. Synthesis and crystal structure of an Ag20
cluster incorporating in situ generated bipodal
[ArP(OEt)S2]– and tripodal [ArPOS2]2− ligands (Ar = 4ꢀ
methoxyphenyl). Inorg. Chem. Commun., 2010, 13, 1191–
1194.
43. Lamming, G.; Kolokotroni, J.; Harrison, T.; Penfold, T. J.;
Clegg, W.; Waddell, P. G.; Probert, M. R.; Houlton, A.
Structural diversity and argentophilic interactions in oneꢀ
dimensional silverꢀbased coordination polymers. Cryst.
Growth Des., 2017, 17, 5753–5763.
44. Serpe, A.; Artizzu, F.; Marchio, L.; Mercuri, M. L.; Pilia,
L.; Deplano, P. Argentophilic interactions in monoꢀ, di, and
polymeric Ag(I) complexes with N,N’ꢀdimethylꢀ
piperazineꢀ2,3ꢀdithione and iodide. Cryst. Growth Des.,
2011, 11, 1278–1286.
45. Bisht, K. K.; Kathalikkattil, A. C.; Suresh, E. Structure
modulation, argentophilic interactions and photoluminesꢀ
cence properties of silver(I) coordination polymers with
isomeric Nꢀdonor ligands. RSC Adv., 2012, 2, 8421–8428.
46. Khlobystov, A.; Blake, A.; Champness, N.; Lemenovskii,
D.; Majouga, A.; Zyk, N.; Schroder, M. Supramolecular
design of oneꢀdimensional coordination polymers based on
silver(I) complexes of aromatic nitrogenꢀdonor ligands.
Coord. Chem. Rev., 2001, 222, 155–192.
47. Huang, G.; Tsang, C. K.; Xu, Z.; Li, K.; Zeller, M.; Hunter,
A. D.; Chui, S. S. Y.; Che, C. M. Flexible Ttioether–Ag(I)
interactions for assembling large organic ligands into crysꢀ
talline networks. Cryst. Growth Des., 2009, 9, 1444–1451.
48. Blake, A. J.; Champness, N. R.; Cooke, P. A.; Nicolson, J.
E. Synthesis of a chiral adamantoid network–the role of
solvent in the construction of new coordination networks
with silver(I). Chem. Commun., 2000, 665–666.
ACS Paragon Plus Environment