Article
Organometallics, Vol. 28, No. 13, 2009 3823
In this context, an important development was Noyori’s
discovery of the use of “Ru(II)(arene)” precursors with chiral
amino alcohols or diamines8 in processes that lead to
excellent activities and enantioselectivities. As a result of
the participation of the ligand in the catalytic reaction,
Noyori proposed the term bifunctional metal-ligand cata-
lysis.9 Other authors have also developed systems based on
Ru-arene fragments with amino alcohol,10 aminoamide,11
and aminocarboxylate12 ligands. Besides the metal-ligand
bifunctional mechanism, other mechanisms involving mono-
hydride or dihydride species have also been proposed.4 It is
worth noting that Baratta et al.13,14 recently designed a new
type of Ru(II) nonarene catalyst containing the ligand
2-(aminomethyl)pyridine (or its derivatives), and these were
very active in the transfer hydrogenation of acetophenone
using NaOH as a cocatalyst. As in the approaches described
by Noyori, in Baratta’s systems the existence of a cis-RuH/
-NH2 motif that assists the hydrogen transfer process plays a
fundamental role in the high activity.14a The main difference
between the Baratta and Noyori systems is that in the former
the alcohol and the ketone coordinate to the metallic center
during the catalytic process in an inner-sphere mechanism,
whereas in Noyori’s system an outer-sphere mechanism has
been established.
been proposed.16 However, the presence of a base is not
desirable from an industrial point of view due to corrosion,
and, more importantly, it can adversely affect stereoselectiv-
ity and cannot be used for base-sensitive ketones17 or
aldehydes, a fact that is very important in the pharmaceutical
industry. Recent studies have focused on the transfer hydro-
genation of ketones in 2-propanol in the absence of base.17
However, in these cases the precursors that led to success are
usually metal-hydride complexes or an additive is present to
generate the hydride derivative. These hydride complexes are
usually much more difficult to handle than the correspond-
ing halides due to their greater sensitivity to air and higher
reactivity. A hydroxy-osmium derivative obtained by treat-
ment of the chloride precursor with NaOH has been found to
show good activity in the transfer hydrogenation of alde-
hydes without the addition of base during the catalytic cycle,
although the activity toward ketones was quite low.18 In
addition, Peris reported an iridium system that is active in the
transfer hydrogenation of ketones, aldehydes, and imines at
room temperature under base-free conditions. The catalyst,
[Ir(NHC)(Cp*)Cl2], is activated in this case by the addition
of AgTfO as a chloride abstractor.19
As far as hydrogenation with H2 is concerned, Noyori8b,8e,20
and Ohkuma21 recently reported excellent results in the
asymmetric hydrogenation of ketones without the parti-
cipation of a base.
The presence of a strong base such as KOH, NaOH, or
KOtBu is usually necessary for the reduction to occur.2,4,6,15
In general, it is proposed that the base is needed to generate a
hydride, which is the catalytically active species, although
cases where the base participates in the catalytic cycle have
We have previously reported the synthesis of chloro-arene
Ru(II) complexes with bis(pyrazol-1-yl)methane ligands
containing different phenyl groups on the central carbon.
The ruthenium derivatives were used as precursors for the
hydrogenation of benzophenone in the presence of base and
using 2-propanol as the hydrogen source.22 It was observed
that there was an interconversion of the two possible isomers
of the arene complexes (see below for the two isomers), a
process that could take place through rupture of the Ru-
N (pyrazolyl) bond. Besides, we have reported that [RuCl2(p-
cymene)(dpim)] [dpim = 2-(diphenylphosphino)-1-methyli-
midazole] reinforces the nucleophilic character of MeOH
by interchange of one of the chlorides with the alcohol
and deprotonation induced by a decoordinated methylimi-
dazole moiety of the phosphane.23 Taking these results into
account, we decided to explore the possibility that our bis
(pyrazol-1-yl)methane derivatives could activate 2-propanol
and possibly generate hydride species that would be active in
the base-free transfer hydrogenation process. Thus, the
partial decoordination of the NN ligand will give rise to
the formation of unsaturated species that could allow the
coordination of the alcohol. This decoordinated pyrazolyl
ring could behave as an internal base and activate the
(8) (a) Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R.
J. Am. Chem. Soc. 1995, 117, 7562. (b) Fujii, A.; Hashiguchi, S.;
Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118,
2521. (c) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97. (d)
Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R. Angew.
Chem., Int. Ed. Engl. 1997, 36, 285. (e) Ohkuma, T.; Utsumi, N.;
Tsutsumi, K.; Murata, K.; Sandoval, C.; Noyori, R. J. Am. Chem.
Soc. 2006, 128, 8724. (f) Sandoval, Ch. A.; Ohkuma, T.; Utsumi, N.;
Tsutsumi, K.; Murata, K.; Noyori, R. Chem. Asian J. 2006, 1-2, 102.
(9) Ikariya, T.; Murata, K.; Noyori, R. Org. Biomol. Chem. 2006, 4,
393.
(10) (a) Nordin, S. J. M.; Roth, P.; Tarnai, T.; Alonso, D. A.; Brandt,
P.; Andersson, P. G. Chem.Eur. J. 2001, 7, 1431. (b) Faller, J. W.;
ꢀ
Lavoie, A. R. Organometallics 2002, 21, 3493. (c) Pasto, M.; Riera, A.;
Pericas, M. A. Eur. J. Org. Chem. 2002, 2337. (d) Everaere, K.;
ꢁ
Mortreux, A.; Carpentier, J. F. Adv. Synth. Catal. 2003, 345, 67.
(e) Petra, D. G. I.; Kamer, P. C. J.; Van Leeuwen, P. W. N. M.; Goubitz,
K.; Van Loon, A. M.; De Vries, J. G.; Schoemaker, H. E. Eur. J. Inorg.
Chem. 1999, 2335. (f ) Brandt, P.; Roth, P.; Andersson, P. G. J. Org.
Chem. 2004, 69, 4885.
(11) Pelagatti, P.; Carcelli, M.; Calbiani, F.; Cassi, C.; Elviri, L.;
Pelizzi, C.; Rizzotti, U.; Rogolino, D. Organometallics 2005, 24, 5836.
(12) (a) Carmona, D.; Lamata, M. P.; Oro, L. A. Eur. J. Inorg. Chem.
2002, 2239. (b) Carmona, D.; Lamata, M. P.; Viguri, F.; Dobrinovich, I.;
Lahoz, F. J.; Oro, L. A. Adv. Synth. Catal. 2002, 344, 499. (c) Bogevig,
A.; Pastor, I. M.; Adolfsson, H. Chem.Eur. J. 2004, 10, 294.
(13) (a) Baratta, W.; Schutz, J.; Herdtweck, E.; Herrmann, W. A.;
Rigo, P. J. Organomet. Chem. 2005, 690, 5570. (b) Baratta, W.;
Herdtweck, E.; Siega, K.; Toniutti, M.; Rigo, P. Organometallics 2005,
24, 1660. (c) Baratta, W.; Chelucci, G.; Gladiali, S.; Siega, K.; Toniutti,
M.; Zanette, M.; Zangrando, E.; Rigo, P. Angew. Chem., Int. Ed. 2005,
44, 6214.
(14) (a) Baratta, W.; Ballico, M.; Esposito, G.; Rigo, P. Chem.Eur. J.
2008, 14, 5588. (b) Baratta, W.; Chelucci, G.; Herdtweck, E.; Magnolia,
S.; Siega, K.; Rigo, P. Angew. Chem., Int. Ed. 2007, 46, 7651. (c) Baratta,
W.; Siega, K.; Rigo, P. Chem.Eur. J. 2007, 13, 7479. (d) Baratta, W.;
Siega, K.; Rigo, P. Adv. Synth. Catal. 2007, 349, 1633. (e) Baratta, W.;
Bosco, M.; Chelucci, G.; Del Zotto, A.; Siega, K.; Toniutti, M.;
e
(17) (a) Ohkuma, T.; Koizumi, M.; Muniz, K.; Hilt, G.; Kabuto, C.;
Noyori, R. J. Am. Chem. Soc. 2002, 124, 6508. (b) Abdur-Rashid, K.;
Clapham, S. E.; Hadzovic, A.; Harvey, J. N.; Lough, A. J.; Morris, R. H.
J. Am. Chem. Soc. 2002, 124, 15104. (c) Dong, Z. R.; Li, Y. Y.; Chen, J.
S.; Li, B. Z.; Xing, Y.; Gao, J. X. Org. Lett. 2005, 7, 1043. (d) Esteruelas,
::
~
M. A.; Garcꢀıa-Yebra, C.; Onate, E. Organometallics 2008, 27, 3029.
~
(18) Castarlenas, R.; Esteruelas, M. A.; Onate, E. Organometallics
2008, 27, 3240.
(19) Corberan, R.; Peris, E. Organometallics 2008, 27, 1954.
(20) Ohkuma, T.; Tsutsumi, K.; Utsumi, N.; Arai, N.; Noyori, R.;
Murata, K. Org. Lett. 2007, 9, 255.
(21) Ohkuma, T.; Utsumi, N.; Watanabe, M.; Tsutsumi, K.; Arai, N.;
Murata, K. Org. Lett. 2007, 9, 2565.
ꢀ ꢀ
(22) Carrion, M. C.; Jalon, F. A.; Manzano, B. R.; Rodrꢀıguez, A. M.;
ꢀ
Sepulveda, F.; Maestro, M. Eur. J. Inorg. Chem. 2007, 3961.
Zangrando, E.; Rigo, P. Organometallics 2006, 25, 4611.
(15) (a) Backvall, J. E. J. Organomet. Chem. 2002, 652, 105.
::
ꢀ
ꢀ
(b) Palmer, M. J.; Wills, M. Tetrahedron: Asymmetry 1999, 10, 2045.
(16) Sandoval, C. A.; Ohkuma, T.; Noyori, R. J. Am. Chem. Soc.
2003, 125, 13490.
(23) Caballero, A.; Jalon, F. A.; Manzano, B. R.; Espino, G.; Perez-
Manrique, M.; Mucientes, A.; Poblete, F. J.; Maestro, M. Organome-
tallics 2004, 23, 5694.