G. Majetich, J. M. Shimkus / Tetrahedron Letters 50 (2009) 3311–3313
3313
ence of the C(5),C(7)-double bond was achieved in 62% yield using
ruthenium chloride and NaIO4.12 Treatment of 20 with a catalytic
amount of thiophenolate anion13 yielded dichroanal B in 75%
yield.3
Scheme 6 details our formal synthesis of taiwaniaquinone D.
Treatment of tertiary alcohol 17 with 6 equiv of methanesulfonyl
chloride in refluxing DCM furnished diene 21 in 84% yield. The oxi-
dative cleavage of the vinyl moiety was accomplished using ruthe-
nium chloride and NaIO4 to furnish aldehyde 22, an intermediate
in Banerjee’s synthesis6d of taiwaniaquinone D.
Acknowledgment
We thank the National Science Foundation for support of this re-
search (CHE-05064846).
References and notes
1. Lin, W.-H.; Fang, J.-M.; Cheng, Y.-S. Phytochemistry 1995, 40, 871–873.
2. (a) Lin, W.-H.; Fang, J.-M.; Cheng, Y.-S. Phytochemistry 1996, 42, 1657–1663; (b)
Chang, C.-I.; Chien, S.-C. Chem. Pharm. Bull. 2003, 51, 1420–1422; (c) Chang,
C.-I.; Chang, J.-Y.; Kuo, C.-C.; Pan, W.-Y.; Kuo, Y.-H. Planta Med. 2005, 71, 72–76.
3. Kawazoe, K.; Yamamoto, M.; Takaishi, Y.; Honda, G.; Fujita, T.; Sezik, E.;
Yesilada, E. Phytochemistry 1999, 50, 493–497.
4. Ohtsu, H.; Iwamoto, M.; Ohishi, H.; Matsunaga, S.; Tanaka, R. Tetrahedron Lett.
1999, 40, 6419–6422.
Scheme 5.
5. Although each new taiwaniaquinoid isolated has the same rearranged abietane
nucleus, the mechanism of its formation is not necessarily the same. For
example, the natural products isolated from Taiwania cryptomerioides are
regarded as 5(6 ? 7)–abeoabietane diterpenoids or 6-nor-5(6 ? 7)–
abeoabietane diterpenoids, in contrast to standishinal (shown below) which
is a 6(7 ? 11)abeoabietane. The position of the formyl group in the natural
products isolated from Salvia dichroantha is not accounted for by either
mechanism; if dichroanone and dichroanal are formed by the same process,
then they are most likely the result of a 6-nor-5-(6-7) type rearrangement.
6. (a) Banerjee, M.; Mukhopadhyay, R.; Achari, B.; Banerjee, A. Kr. Org. Lett. 2003,
5, 3931–3933; (b) Fillion, E.; Fishlock, D. J. Am. Chem. Soc. 2005, 127, 13144–
13145; (c) Planas, L.; Mogi, M.; Takita, H.; Kajimoto, T.; Node, M. J. Org. Chem.
2006, 71, 2896–2898; (d) Banerjee, M.; Mukhopadhyay, R.; Achari, B.; Banerjee,
A. Kr. J. Org. Chem. 2006, 71, 2787–2796; (e) McFadden, R. M.; Stoltz, B. M. J. Am.
Chem. Soc. 2006, 128, 7738–7739; (f) Liang, G.; Xu, Y.; Seiple, I. B.; Trauner, D. J.
Am. Chem. Soc. 2006, 128, 11022–11023; (g) Li, S.; Chiu, P. Tetrahedron Lett.
2008, 49, 1741–1744; (h) Tang, S.; Xu, Y.; He, J.; He, Y.; Zheng, J.; Pan, X.; She, X.
Org. Lett 2008, 10, 1855–1858; (i) Bhar, S. S.; Ramana, M. M. V. J. Org. Chem.
2004, 69, 8935–8937; (j) Bhar, S. S.; Ramana, M. M. V. Tetrahedron Lett. 2006,
47, 7805–7807; (k) Avarez-Manzaneda, R.; Cabrera, E.; Chahboun, E.; Alvarez,
E.; Haidour, A.; Ramos, J. M.; Alvarez-Manzaneda, R.; Hmamouchi, M.; Es-
Samti, H. J. Chem. Soc., Chem. Commun. 2009, 592–594; For a relevant model
study, see: (l) Lomberget, T.; Bentz, E.; Bouyssi, D.; Balme, G. Org. Lett. 2003, 5,
2055–2057.
7. Shimkus, J. M.; Majetich, G. ‘‘Total synthesis of ( )-dichroanone and studies
toward related diterpenoids.” 58th Southeastern Regional Meeting of the ACS,
Augusta, GA, November 1–4, 2006.
8. (a) Barton, D. H. R.; Bashiardes, G.; Fourrey, J.-L. Tetrahedron 1988, 44, 147–162;
(b) Pazos, Y.; Iglesias, B.; de Lera, A. R. J. Org. Chem. 2001, 66, 8483–8489.
9. The preparation of iodide 7 requires the oxidation of the hydrazone generated
from 2,2,6-trimethylcyclohexanone with iodine;9 however, in our hands, the
yield of this two-step procedure varied, presumably due to the stability of the
intermediate hydrazone.
Scheme 6.
We believed that more nucleophilic reagents, such as vinylmag-
nesium bromide, would add to the C(7) carbonyl (Scheme 5). If so,
dehydration of the resulting tertiary alcohol, followed by oxidative
cleavage of the vinyl group, would introduce a formyl group at
C(7). To our satisfaction, treatment of ketone 16 with vinylmagne-
sium bromide in ether produced a mixture of the expected tertiary
alcohol 17 and ketone 18, clearly the result of a nucleophilic aro-
matic substitution reaction. We recognized that ketone 18 repre-
sented an avenue to dichroanal B, whereas alcohol 17 would
serve as an attractive precursor for taiwaniaquinol D and taiwani-
aquinone D. The subtle control of the reaction temperature and the
choice of solvent allowed us to influence whether the vinyl moiety
was introduced at C(7) or at C(14). Adding the Grignard reagent to
ketone 16 at À78 °C and slowly warming the reaction mixture over
several hours produced a 1:1 ratio of adducts 17:18 in 77% yield. In
contrast, adding the Grignard reagent to ketone 16 in toluene at
0 °C gave a 1:4 ratio of adducts 17:18, respectively, in 75% yield.
The reduction of ketone 18 with LAH, followed by dehydration
using trifluoroacetic acid, produced diene 19 in 78% yield over
two steps. The selective cleavage of the vinyl moiety in the pres-
10. Carreno, M. C.; Ruano, J. L. G.; Toledo, M. A.; Urbano, A. Tetrahedron: Asymmetry
1997, 8, 913–921.
11. Minamikawa, H.; Hayakawa, S.; Yamada, T.; Iwasawa, N.; Narasaka, K. Bull.
Chem. Soc, Jpn. 1988, 61, 4379–4384.
12. (a) Yang, D.; Zhang, C. J. Org. Chem. 2001, 66, 4814–4818; (b) Plietker, B.;
Niggemann, M.; Pollrich, A. Org. Biomol. Chem. 2004, 3, 1116–1124.
13. Nayak, M. K.; Chakraborti, A. K. Tetrahedron Lett. 1997, 38, 8749–8752.