3518
J. Robertson, E. Abdulmalek / Tetrahedron Letters 50 (2009) 3516–3518
4. For example: Nishimura, Y.; Adachi, H.; Satoh, T.; Shitara, E.; Nakamura, H.;
Kojima, F.; Takeuchi, T. J. Org. Chem. 2000, 65, 4871–4882.
5. (a) Knight, J. G.; Ainge, S. W.; Harm, A. M.; Harwood, S. J.; Maughan, H. I.;
Armour, D. R.; Hollinshead, D. M.; Jaxa-Chamiec, A. A. J. Am. Chem. Soc. 2000,
122, 2944–2945; (b) Knight, J. G.; Tchabanenko, K. Tetrahedron 2002, 58, 6659–
6664; (c) Anderson, T. F.; Knight, J. G.; Tchabanenko, K. Tetrahedron Lett. 2003,
44, 757–760; (d) Knight, J. G.; Lawson, I. M.; Johnson, C. N. Synthesis 2006, 227–
230.
6. Knight, J. G.; Tchabanenko, K. Tetrahedron 2003, 59, 281–286.
7. Wee, A. G. H.; McLeod, D. D.; Rankin, T. J. Heterocycles 1998, 48, 2263–2278.
8. Olofsson, B.; Somfai, P. J. Org. Chem. 2002, 67, 8574–8583.
9. For example: Ibuka, T.; Suzuki, K.; Habashita, H.; Otaka, A.; Tamamura, H.;
Mimura, N.; Miwa, Y.; Taga, T.; Fujii, N. J. Chem. Soc., Chem. Commun. 1994,
2151–2152. see also Refs. 5 and 6.
10. (a) Donohoe, T. J.; Helliwell, M.; Johnson, P. D.; Keenan, M. Chem. Commun.
2001, 2078–2079; (b) Donohoe, T. J.; Cowley, A.; Johnson, P. D.; Keenan, M. J.
Am. Chem. Soc. 2002, 124, 12934–12935; (c) Donohoe, T. J.; Johnson, P. D.; Pye,
R. J. Org. Biomol. Chem. 2003, 1, 2025–2028; (d) Donohoe, T. J.; Johnson, P. D.;
Keenan, M.; Pye, R. J. Org. Lett. 2004, 6, 2583–2585; (e) Donohoe, T. J.; Chughtai,
M. J.; Klauber, D. J.; Griffin, D.; Campbell, A. D. J. Am. Chem. Soc. 2006, 128,
2514–2515; (f) Donohoe, T. J.; Bataille, C. J. R.; Gattrell, W.; Kloesges, J.;
Rossignol, E. Org. Lett. 2007, 9, 1725–1728.
11. Kostiuk, S.L. Part II Thesis, Oxford, 2006.
12. Application of the Du Bois conditions (Espino, C.G.; Du Bois, J. Angew. Chem. Int.
Ed. 2001,40, 598–600) to carbamate 4 resulted in a 46% yield of the O-Ac
derivative of oxazolidinone 5 as a 1:1 mixture of diastereomers (Robertson, J.;
Unsworth, W. P., unpublished results).
13. Kocovsky, P. Tetrahedron Lett. 1986, 27, 5521–5524.
14. Relative stereochemistry was assigned on the basis of NOE experiments
conducted on the derived acetate esters.
15. Cook, G. R.; Sun, L. Org. Lett. 2004, 6, 2481–2484. We also found this
isomerisation procedure to be applicable to the unprotected alcohol 5 and,
following chromatography,
a 96:4 ratio of trans-5:cis-5 was obtained in
essentially quantitative yield.11
16. Henbest, H. B.; Nicholls, B. J. Chem. Soc. 1957, 4608–4612.
17. (a) Aceña, J. L.; De Alba, E.; Arjona, O.; Plumet, J. Tetrahedron Lett. 1996, 37,
3043–3044; (b) Aceña, J. L.; Arjona, O.; Plumet, J. J. Org. Chem. 1997, 62, 3360–
3364.
18. E.g. VO(acac)2, t-BuOOH Sharpless, K. B.; Michaelson, R. C. J. Am. Chem. Soc.
1973, 95, 6136–6137.
Figure 2. ORTEP representation of lactone 16.24
tam 12 mirrors our recent results with butenolide spiroacetals27
and forms part of a broader trend.28
The pronounced tendency for d-lactams in this series to rear-
range to c-lactones by transacylation warrants comment because
19. A semi-empirical (PM3) conformational search was performed in Spartan using
the findboats keyword. SPARTAN’06; Wavefunction. Irvine, CA: Shao, Y.; Molnar, L.
F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T. B.;
Slipchenko, L. V.; Levchenko, S. V.; O’Neill, D. P.; DiStasio Jr., R. A.; Lochan, R. C.;
Wang, T.; Beran, G. J. O.; Besley, N. A.; Herbert, J. M.; Lin, C. Y.; Van Voorhis, T.;
Chien, S. H.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath, P.
P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. F. C.; Dachsel, H.; Doerksen, R.
J.; Dreuw, A.; Dunietz, B. D.; Dutoi, A. D.; Furlani, T. R.; Gwaltney, S. R.; Heyden,
A.; Hirata, S.; Hsu, C.-P.; Kedziora, G.; Khalliulin, R. Z.; Klunzinger, P.; Lee, A. M.;
Lee, M. S.; Liang, W. Z.; Lotan, I.; Nair, N.; Peters, B.; Proynov, E.I.; Pieniazek, P.
A.; Rhee, Y. M.; Ritchie, J.; Rosta, E.; Sherrill, C. D.; Simmonett, A. C.; Subotnik, J.
E.; Woodcock III, H. L.; Zhang, W.; Bell, A. T.; Chakraborty, A. K.; Chipman, D.
M.; Keil, F. J.; Warshel, A.; Hehre, W. J.; Schaefer, H. F.; Kong, J.; Krylov, A. I.; Gill,
P. M. W.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2006, 8, 3172–3191.
20. A similar conformational search performed on the N–H analogue revealed no
significant preference for a pseudoaxial CH2OH.
this is not generally a favourable process. Indeed, the reverse trans-
formation is a well-known method for the production of sugar lac-
tams from carbohydrate lactones (of various ring sizes).29 There is,
however, limited precedent for this reaction when the lactam is
destabilised by further N-acylation (e.g., by Boc)30 and there is a
single example of this ring contraction in an N-sulfonyl substrate
where it occurs as a side reaction within a study on the total syn-
thesis of xestocyclamine A.31 Further work would be necessary to
establish the generality of this reaction and its utility in the synthe-
sis of naturally occurring lactones from, for example, pyridine
derivatives.
21. Altenbach, H.-J.; Himmeldirk, K. Tetrahedron: Asymmetry 1995, 6, 1077–1080.
see also Ref. 6.
22. (a) Donohoe, T. J.; Moore, P. R.; Waring, M. J.; Newcombe, N. J. Tetrahedron Lett.
1997, 38, 5027–5030; (b) Donohoe, T. J. Synlett 2002, 1223–1232.
23. For example: Tius, M. A.; Drake, D. J. Tetrahedron 1996, 52, 14651–14660.
24. Crystal data for 16: C19H31NO7SSi, M = 445.61, colourless thin straw,
monoclinic, a = 6.3423(1), b = 18.3958(3), c = 20.0446(3) Å, V = 2308.69(6) Å3,
T = 150 K, space group P21/c, Z = 4, 8457 reflections measured, 4997
independent all of which were used for refinement (Rint = 0.072), final
wR = 0.1699. CCDC 721043 contains the full crystallographic data for this
compound; this can be obtained free of charge from The Cambridge
25. Chamberlain, P.; Roberts, M. L.; Whitham, G. H. J. Chem. Soc. (B) 1970, 1374–
1381.
Acknowledgements
We thank Universiti Putra Malaysia for a studentship (E.A.). We
also thank Sarah Kostiuk and Andrew Tyrrell, respectively, for pre-
liminary experiments and for obtaining the crystal structure. We
also acknowledge the Oxford Chemical Crystallography Service
for use of instrumentation, and Dr. Amber Thompson for invaluable
assistance. Finally, we are very grateful to Dr. Kirill Tchabanenko
for his assistance with the carbonylation reactions.
26. Donohoe, T. J.; Blades, K.; Moore, P. R.; Waring, M. J.; Winter, J. J. G.; Helliwell,
M.; Newcombe, N. J.; Stemp, G. J. Org. Chem. 2002, 67, 7946–7956.
27. Robertson, J.; Naud, S. Org. Lett. 2008, 10, 5445–5448.
References and notes
28. Cha, J. K.; Kim, N.-S. Chem. Rev. 1995, 95, 1761–1795.
29. (a) Hanessian, S.; Haskell, T. H. J. Heterocycl. Chem. 1964, 1, 55–56; (b)
Hanessian, S.; Haskell, T. H. J. Heterocycl. Chem. 1964, 1, 57–58; (c) Weidmann,
H.; Fauland, E. Liebigs Ann. Chem. 1964, 679, 192–194.
30. (a) Yamauchi, C.; Kuriyama, M.; Shimazawa, R.; Morimoto, T.; Kakiuchi, K.;
Shirai, R. Tetrahedron 2008, 64, 3133–3140; (b) Dinsmore, A.; Doyle, P. M.;
Steger, M.; Young, D. W. J. Chem. Soc., Perkin Trans. 1 2002, 613–621; (c) Coe, D.;
Drsydale, M.; Philps, O.; West, R.; Young, D. W. J. Chem. Soc., Perkin Trans. 1
2002, 2459–2472.
1. (a) Aoyagi, T.; Suda, H.; Uotani, K.; Kojima, F.; Aoyama, T.; Horiguchi, K.;
Hamada, M.; Takeuchi, T. J. Antibiot. 1992, 45, 1404–1408; (b) Aoyama, T.;
Naganawa, H.; Suda, H.; Uotani, K.; Aoyagi, T.; Takeuchi, T. J. Antibiot. 1992, 45,
1557–1558.
2. (a) Tchabanenko, K. DPhil Thesis, Oxford, 1998.; (b) Abdulmalek, E. DPhil
Thesis, Oxford, 2007.
3. According to an exact structure search of the Chemical Abstracts database
(SciFinder, Jan 2009). The (carbohydrate numbering) 2,3,4,5-R,R,R,S-, R,S,S,S-,
S,R,R,S-, S,R,S,S-, and S,S,S,S- diastereomers do not appear in the hitset.
31. Yun, H.; Gagnon, A.; Danishefsky, S. J. Tetrahedron Lett. 2006, 47, 5311–5315.