Journal of the American Chemical Society
Article
(2) (a) Bloch, R. Chem. Rev. 1998, 98, 1407. (b) Kobayashi, S.; Mori,
Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.
(3) (a) Cram, D. J.; Elhafez, F. A. A. J. Am. Chem. Soc. 1952, 74, 5828.
(b) Cram, D. J.; Kopecky, K. R. J. Am. Chem. Soc. 1959, 81, 2748.
(4) Cornforth, J. W.; Cornforth, R. H.; Mathew, K. K. J. Chem. Soc.
1959, 112.
(5) Cher
2199.
́
est, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 18,
Figure 6.
(6) Anh, N.; Eisenstein, O. Nouv. J. Chim. 1977, 1, 61.
(7) Evans, D. A.; Siska, S. J.; Cee, V. J. Angew. Chem., Int. Ed. 2003,
42, 1761.
backfilled with N2 (g) three times, was charged with dicyclohexylbor-
ane (Cy2BH) (107 mg, 0.6 mmol) and dichloromethane (0.7 mL).
The solution was cooled to 0 °C followed by slow addition of alkyne
(0.6 mmol). After 5 min the reaction was warmed to room
temperature and stirred for an additional 15 min. The solution was
cooled to −78 °C, and dimethylzinc (Me2Zn) (0.75 mL, 2 M in
dichloromethane) was added. After stirring at −78 °C for 30 min,
EtZnBr (0.4 mmol) was added under a steady flow of N2 (g).
Immediately thereafter, the aldimine precursor (0.2 mmol, in 0.2 mL
of dichloromethane) was added. The reaction mixture was warmed to
−45 °C and monitored until completion as determined by TLC
(usually 4−6 h). The reaction mixture was quenched with 1 M HCl (2
mL) followed by addition of 5 mL of EtOAc. The organic layer was
separated, and the aqueous layer was extracted successively with
EtOAc (2 × 5 mL). The combined organic layers were successively
washed with aq. NaHCO3 and brine, dried over MgSO4, and filtered.
The filtrate was concentrated in vacuo and purified by column
chromatography on silica gel.
(8) (a) Chen, X.; Hortelano, E. R.; Eliel, E. L.; Frye, S. V. J. Am.
Chem. Soc. 1990, 112, 6130. (b) Karabatsos, G. J. J. Am. Chem. Soc.
1967, 89, 1367.
(9) Cee, V. J.; Cramer, C. J.; Evans, D. A. J. Am. Chem. Soc. 2006,
128, 2920.
(10) Mengel, A.; Reiser, O. Chem. Rev. 1999, 99, 1191.
(11) (a) Clayden, J.; Greeves, N. In Organic Chemistry; Oxford
University Press: New York, 2001; p 889. (b) Bruckner, R. In
Advanced Organic Chemistry: Reaction Mechanisms; Academic Press:
San Diego, 2002; p 315. (c) Carey, F. A.; Sundberg, R. J. In Advanced
Organic Chemistry: Part A: Structure and Mechanisms, 5th ed.; Springer:
New York, 2007; p 179.
(12) (a) Reetz, M. T.; Huellmann, M. J. Chem. Soc., Chem. Commun.
̈
1986, 1600. (b) Chen, X.; Hortelano, E. R.; Eliel, E. L.; Frye, S. V. J.
Am. Chem. Soc. 1992, 114, 1778. (c) Evans, D. A.; Allison, B. D.; Yang,
M. G. Tetrahedron Lett. 1999, 40, 4457. (d) Evans, D. A.; Allison, B.
D.; Yang, M. G.; Masse, C. E. J. Am. Chem. Soc. 2001, 123, 10840.
(e) Borg, T.; Danielsson, J.; Mohiti, M.; Restorp, P.; Somfai, P. Adv.
Synth. Catal. 2011, 353, 2022. (f) Dunning, T. H. J. Chem. Phys. 1989,
90, 1007.
Computational Details. Reported free energies (in kJ mol−1) are
calculated with Jaguar (version 7.7, Schrodinger, LLC, New York, NY,
2010) using the M06 level at B3LYP geometries,26 with corrections for
thermodynamic contributions and continuum benzene solvation,27 as
described in detail in the Supporting Information. For B3LYP
calculations, we use the LACVP*28 basis set (BSI). For single-point
M06 calculations, we use the cc-PVTZ*+ basis set29 for light elements,
with either the Hay−Wadt ECP(BSII) or an all-electron TZV* basis
set12f,30 (BSIII) for Zn.
(13) (a) Stanton, G. R.; Johnson, C. N.; Walsh, P. J. J. Am. Chem. Soc.
2010, 132, 4399. (b) Stanton, G. R.; Koz, G.; Walsh, P. J. J. Am. Chem.
Soc. 2011, 133, 7969. (c) Stanton, G. R.; Kauffman, M. C.; Walsh, P. J.
Org. Lett. 2012, 14, 3368.
(14) Kulawiec, R. J.; Crabtree, R. H. Coord. Chem. Rev. 1990, 99, 89.
(15) (a) Hanamoto, T.; Fuchikami, T. J. Org. Chem. 1990, 55, 4969.
(b) Mohanta, P. K.; Davis, T. A.; Gooch, J. R.; Flowers, R. A. I. J. Am.
Chem. Soc. 2005, 127, 11896. (c) Malamakal, R. M.; Hess, W. R.;
Davis, T. A. Org. Lett. 2010, 12, 2186.
(16) Chemla, F.; Hebbe, V.; Normant, J.-F. Synthesis 2000, 75.
̂ ́
(17) Cote, A.; Boezio, A. A.; Charette, A. B. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 5405.
(18) DiMauro, E. F.; Kozlowski, M. C. J. Am. Chem. Soc. 2002, 124,
12668.
(19) Blake, A. J.; Shannon, J.; Stephens, J. C.; Woodward, S. Chem.
Eur. J. 2007, 13, 2462.
(20) Johannsen, M.; Jørgensen, K. A. Chem. Rev. 1998, 98, 1689.
(21) (a) Oppolzer, W.; Radinov, R. N. HeIv. Chim. Acta 1992, 75,
170. (b) Oppolzer, W.; Radinov, R. N.; Brabander, J. D. Tetrahedron
Lett. 1995, 36, 2607. (c) Srebnik, M. Tetrahedron Lett. 1991, 32, 2449.
(22) Yamakawa, M.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 6327.
(23) (a) Evans, D. Science 1988, 240, 420. (b) Noyori, R.; Kitamura,
M. Angew. Chem., Int. Ed. Engl. 1991, 30, 49. (c) Soai, K.; Niwa, S.
Chem. Rev. 1992, 92, 833. (d) Pu, L.; Yu, H.-B. Chem. Rev. 2001, 101,
757. (e) Buono, F.; Walsh, P. J.; Blackmond, D. G. J. Am. Chem. Soc.
2002, 124, 13652. (f) Chen, Y. K.; Costa, A. M.; Walsh, P. J. J. Am.
Chem. Soc. 2001, 123, 5378.
(24) (a) Rasmussen, T.; Norrby, P.-O. J. Am. Chem. Soc. 2001, 123,
2464. (b) Rasmussen, T.; Norrby, P.-O. J. Am. Chem. Soc. 2003, 125,
5130. (c) Panda, M.; Phuan, P.-W.; Kozlowski, M. C. J. Org. Chem.
2003, 68, 564. (d) Goldfuss, B.; Houk, K. N. J. Org. Chem. 1998, 63,
8998. (e) Goldfuss, B.; Steigelmann, M.; Khan, S. I.; Houk, K. N. J.
Org. Chem. 2000, 65, 77. (f) Goldfuss, B.; Steigelmann, M.; Rominger,
ASSOCIATED CONTENT
* Supporting Information
■
S
Procedures, full characterization of new compounds, calculated
structures and energies, and crystallographic data for 5c and 6b.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the NSF (CHE-0848467 and 1152488) for support
of this work. We are also grateful to Prof. Marisa Kozlowski
(University of Pennsylvania) for helpful discussions. G.R.S.
thanks UNCF−Merck and NOBCChE/GlaxoSmithKline pro-
grams, ACS Organic Division, and Amgen for graduate
scholarships.
REFERENCES
■
(1) (a) Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis;
Wiley: New York, 1989. (b) Hoveyda, A. H.; Evans, D. A.; Fu, G. C.
Chem. Rev. 1993, 93, 1307. (c) Carreira, E. M.; Kvaerno, L. Classics in
Stereoselective Synthesis; Wiley-VCH: Weinheim, Germany, 2009.
(d) Nicolaou, K. C.; Sorensen, E. J. Classics in Total Synthesis; VCH:
Weinheim, Germany, 1996.
F. Eur. J. Org. Chem. 2000, 2000, 1785. (g) Vaz
́ ̀
quez, J.; Pericas, M. A.;
Maseras, F.; Lledos, A. J. Org. Chem. 2000, 65, 7303. (h) Vidal-Ferran,
́
A.; Moyano, A.; Pericas, M. A.; Riera, A. Tetrahedron Lett. 1997, 38,
8773. (i) Yamakawa, M.; Noyori, R. Organometallics 1999, 18, 128.
(j) Brandt, P.; Hedberg, C.; Lawonn, K.; Pinho, P.; Andersson, P. G.
17603
dx.doi.org/10.1021/ja306781z | J. Am. Chem. Soc. 2012, 134, 17599−17604