R. Heng et al. / Tetrahedron Letters 50 (2009) 3613–3616
3615
neoPnO
neoPnOC(=S)SNa
either chlorides 7b or 7h. In the case of 7g, the required enolate
cannot be formed, and the small yield of product probably arises
Me
Me
R
O
S
O
S
by an alternative route involving a carbene, generated by
nation of the chloride.
a-elimi-
H
Cl
R
DMF, rt
Cl
R
Cl
2g,h
R
In the case of slightly strained, fused cyclobutanones, the reac-
tion furnished two regioisomeric products, in contrast to the pre-
ceding examples. Thus, reaction of chlorocyclobutanone 7i under
the usual conditions furnished, in addition to the expected xan-
thate 8i, a significant amount of regioisomer 13i. Clearly, the SN2
and SN20 occur with comparable rates (Scheme 5). A similar behav-
iour was exhibited by dihydropyrane fused chlorocyclobutanone
7j, which afforded 8j and 13j in 61% and 14% yields, respectively.
In further support of the postulated mechanism, we found that
it is possible to obtain mono-xanthates from dichlorocyclobuta-
nones by blocking the enolisation after the introduction of the first
xanthate group and therefore preventing the second substitution
from taking place, as illustrated by the examples displayed in
Scheme 6.
2g; 14g, R = Me
2h; 14h, R = Et
14g, 91% (cis : trans 3:1)
14h, 94% (cis : trans 7:3)
Cl
O
Me
O
Me
Cl
Cl
S
Me
OneoPn
Me
H
Me
Me
S
S
3g
14'g
neoPnO
S
H
O
O
Cl
Cl
Cl
2i
14i, 60% (cis : trans 5:3)
Treatment of 2g with sodium O-neopentyl xanthate in DMF
gave a high yield of distal chloroxanthate 14g, arising by an SN2’
reaction on the corresponding enolate 3g. Clearly, further enolisa-
tion in 14g, in a manner allowing substitution of the second chlo-
rine is no longer possible and only the mono-xanthate is obtained.
Furthermore, none of the isomeric products 140g, possibly derived
from a prior cine-rearrangement of the starting geminal dichloride
2g followed by SN2 substitution by the xanthate salt, was ob-
served.9 In the same manner, dichloroketones 2h and 2i furnished
xanthates 14h and 14i in 94% and 60% yield, respectively. No added
base is required in these cases, in line with the greater acidity of
the dichlorocyclobutanones, as discussed above (Schemes 1 and 2).
In summary, this study has provided a simple solution to the
Scheme 6. Synthesis of mono-xanthates from
a,a-dichlorocyclobutanones.
the chloride by a normal SN2 process is already reasonably
efficient.
Acknowledgement
We thank Ecole Polytechnique for generous financial support to
one of us (R.H.).
Supplementary data
synthesis of
ther processed through the powerful xanthate transfer technol-
ogy.1 Extension of this approach to other
-chloroketones is
currently being investigated. Preliminary results with -chlorocy-
clopentanones and -chlorocyclohexanones seem to indicate a
a
-xanthyl-cyclobutanones,10 which can now be fur-
Experimental procedures, characterization data and copies of
1H, 13C and NMR spectra are presented. Supplementary data asso-
ciated with this article can be found, in the online version, at
a
a
a
much less pronounced effect of added base. It must be pointed
out, however, that in these derivatives the direct substitution of
References and notes
1. For general reviews see: Zard, S. Z. Angew. Chem., Int. Ed. Engl. 1997, 36, 672;
Zard, S. Z. Xanthates and Related Derivatives as Radical Precursors. In Radicals
in Organic Synthesis; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001;
Vol. 1, p 90; Quiclet-Sire, B.; Zard, S. Z. Top. Curr. Chem. 2006, 264, 201; Quiclet-
Sire, B.; Zard, S. Z. Chem. Eur. J. 2006, 12, 6002.
2. Binot, G.; Zard, S. Z. Tetrahedron Lett. 2003, 44, 7703.
3. Brady, W. T. Synthesis 1971, 415; Brady, W. T. Tetrahedron 1981, 37, 2949;
Bellus, D.; Ernst, B. Angew. Chem., Int. Ed. Engl. 1988, 27, 797.
O
O
neoPnOC(=S)SNa
DABCO (0.2 eq.)
DMF, rt
Cl
S
7i
4. Conia, J. M.; Robson, M. J. Angew. Chem., Int. Ed. Engl. 1975, 14, 473; Martin, P.;
Greuter, H.; Bellus, D. J. Am. Chem. Soc. 1979, 101, 5853; Martin, P.; Greuter, H.;
Rihs, G.; Winkler, T.; Bellus, D. Helv. Chim. Acta 1981, 64, 2571; Zengin, M.;
Dastan, A.; Balci, M. Synth. Commun. 2001, 31, 1993.
8i, 56%
neoPnO
S
S
5. For rare examples of cine substitutions of chloro- and dichloro-cyclobutanones,
see: (a) Harmata, M.; Huang, C.; Rooshenas, P.; Schreiner, P. R. Angew. Chem.,
Int. Ed. Engl. 2008, 47, 8696; (b) Hassner, A.; Naidorf-Meir, S.; Frimer, A. A. J. Org.
Chem. 1996, 61, 4051; (c) Hassner, A.; Naidorf-Meir, S.; Gottlieb, H. E.;
Goldberg, I. J. Org. Chem. 1993, 58, 5202; (d) Hassner, A.; Naidorf-Meir, S. J. Org.
Chem. 1992, 57, 5102; (e) Hassner, A.; Naidorf-Meir, S.; Gottlieb, H. E.;
Goldberg, I. J. Org. Chem. 1992, 57, 2442; (f) Butenschön, H. J. Chem. Soc., Perkin
Trans. 1 1991, 483; (g) Hassner, A.; Naidorf-Meir, S.; Gottlieb, H. E. Tetrahedron
Lett. 1990, 31, 2181; (h) Snider, B. B.; Walner, M. Tetrahedron 1989, 45, 3171; (i)
Hassner, A.; Naidorf-Meir, S. J. Org. Chem. 1989, 54, 4954; (j) Hassner, A.; Dillon,
J. J. Org. Chem. 1986, 51, 4954; (k) Hassner, A.; Dillon, J.; Onan, K. O. J. Org. Chem.
1986, 51, 3315; (l) Tsunetsugu, J.; Asai, M.; Hiruma, S.; Kurata, Y.; Mori, A.; Ono,
K.; Uchiyama, H.; Sato, M.; Ebine, S. J. Chem. Soc., Perkin Trans. 1 1983, 285; (m)
Hassner, A.; Dillon, J. L.; Krepski, R. L.; Onan, K. D. Tetrahedron Lett. 1983, 24,
2181; (n) Harding, K. E.; Trotter, J. W.; May, L. M. J. Org. Chem. 1977, 42, 2715.
SN2'
+
neoPnO
S
S
O
SN2
neoPnO
S
O
S
Cl
neoPnO
S
13i, 26%
O
S
neoPnO
O
Cl
S
O
O
7j
6. Only one example involving the reaction of an
a-un-substituted-a-chloro-
cyclobutanone with silver trifluoroacetate has been reported, see: Schmidt, A.
H.; Kircher, G.; Bräu, E. J. Org. Chem. 1998, 63, 1954.
neoPnOC(=S)SNa
DABCO (0.2 eq.)
DMF, rt
+
7. For relevant studies in the context of the Favorskii rearrangement, see: (a)
Föhlisch, B.; Radl, A.; Schweitzer-Raschke, R.; Henkel, S. Eur. J. Org. Chem. 2001,
4357; (b) Brady, W. T.; Patel, A. D. J. Org. Chem. 1974, 39, 1949; (c) Brady, W. T.;
Patel, A. D. J. Org. Chem. 1973, 38, 4106; (d) Brady, W. T.; Hieble, J. P. J. Org.
Chem. 1971, 36, 2033; (e) Bordwell, F. G.; Carlson, M. W. J. Am. Chem. Soc. 1970,
92, 3370. 3377; (f) Bordwell, F. G.; Carlson, M. W. J. Am. Chem. Soc. 1969, 91,
O
O
S
8j, 61%
13j, 14%
neoPnO
S
Scheme 5. Cases leading to regioisomers.