3462
G.-L. Zhao et al. / Tetrahedron Letters 50 (2009) 3458–3462
List, B. J. Am. Chem. Soc. 2005, 127, 15036; (d) Marigo, M.; Schulte, T.; Franzén,
11. (a) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem., Int.
Ed. 2005, 44, 794; (b) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew.
Chem., Int. Ed. 2005, 44, 4212; For a review, see: (c) Mielgo, A.; Palomo, C. Chem.
Asian J. 2008, 3, 922.
12. Sundén, H.; Rios, R.; Córdova, A. Tetrahedron Lett. 2007, 48, 7865.
13. To a stirred solution of the catalyst 4 (10 or 20 mol %) in CHCl3 (1 mL) were
added glutaraldehyde (100 mg, 0.5 mmol, 40% aqueous solution) and ester 2
(0.25 mmol) at 45 °C. Next, the reaction mixture was stirred vigorously and
monitored by TLC. After the time shown in Table 2, the reaction mixture was
allowed to cool and then extracted with EtOAc (3 ꢀ 15 mL). The organic layer
was combined, dried over Na2SO4, and the solvent was removed. The residue
was purified by silica gel column chromatography (pentane/ethyl
acetate = 4:1–1:1) to give the corresponding product 3. (1S,2R,3R,6R)-Methyl
J.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 15710; (e) Yamamoto, Y.;
Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 5962; (f) Ramachary,
D. B.; Chowdari, N. S.; Barbas, C. F., III Angew. Chem., Int. Ed. 2003, 42, 4233; (g)
Marigo, M.; Franzén, J.; Poulsen, T. B.; Zhuang, W.; Jørgensen, K. A. J. Am. Chem.
Soc. 2005, 127, 6964; (h) Sundén, H.; Ibrahem, I.; Eriksson, L.; Córdova, A.
Angew. Chem., Int. Ed. 2005, 44, 4877; (i) Enders, D.; Hüttl, M. R. M.; Grondal, C.;
Raabe, G. Nature 2006, 441, 861; (j) Sundén, H.; Ibrahem, I.; Córdova, A.
Tetrahedron Lett. 2006, 47, 99; (k) Carlone, A.; Marigo, M.; North, C.; Landa, A.;
Jørgensen, K. A. Chem. Commun. 2006, 47, 4928; (l) Wang, W.; Li, H.; Wang, J.;
Zu, L. J. Am. Chem. Soc. 2006, 128, 10354; (m) Rios, R.; Sunden, H.; Ibrahem, I.;
Zhao, G.-L.; Eriksson, L.; Córdova, A. Tetrahedron Lett. 2006, 47, 8547; (n)
Govender, T.; Hojabri, L.; Moghaddam, F. M.; Arvidsson, P. I. Tetrahedron:
Asymmetry 2006, 17, 1763; (o) Sundén, H.; Ibrahem, I.; Zhao, G.-L.; Eriksson, L.;
Córdova, A. Chem. Eur. J. 2007, 13, 574; (p) Carlone, A.; Cabrera, S.; Marigo, M.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2007, 46, 1101; (q) Enders, D.; Hüttl, M. R.
M.; Runsink, J.; Raabe, G.; Wendt, B. Angew. Chem., Int. Ed. 2007, 46, 467; (r)
Enders, D.; Hüttl, M. R. M.; Raabe, G.; Bats, J. W. Adv. Synth. Catal. 2008, 350,
267; (s) Reyes, E.; Jiang, H.; Milelli, A.; Elsner, P.; Hazell, R. G.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2007, 46, 9202; (t) Sundén, H.; Rios, R.; Xu, Y.; Eriksson,
L.; Córdova, A. Adv. Synth. Catal. 2007, 349, 2549; (u) Hong, B.-C.; Nimje, R. Y.;
Sadani, A. A.; Liao, J.-H. Org. Lett. 2008, 10, 2345; (v) Tan, B.; Cua, P. J.; Li, Y.;
Zhong, G. Org. Lett. 2008, 10, 2437; (w) Hazelard, D.; Ishikawa, H.; Hashizume,
D.; Koshino, D.; Hayashi, Y. Org. Lett. 2008, 10, 1445.
1-cyano-3-formyl-6-hydroxy-2-(4-nitrophenyl)cyclohexanecarboxylate
3b:
½ ꢁ
a 2D5
+ 16.1 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3) d 9.46 (d, J = 2.0 Hz,
1H), 8.20 (d, J = 8.8 Hz, 2H), 7.51 (d, J = 8.8 Hz, 2H), 4.24 (dd, J = 4.0, 12.0 Hz,
1H), 3.59 (s, 3H), 3.50 (d, J = 12.4 Hz, 1H), 3.30 (ddt, J = 2.0, 4.0, 12.4 Hz, 1H),
2.44 (br s, 1H), 2.35–2.26 (m, 2H), 2.06–1.97 (m, 1H), 1.62–1.52 (m, 1H); 13C
NMR (100 MHz, CDCl3) d 199.4, 167.5, 148.1, 143.0, 129.5, 124.2, 115.7, 73.7,
61.0, 53.9, 49.7, 47.9, 30.2, 24.3. The enantiomeric excess was determined by
HPLC with an AD column (n-hexane/i-PrOH = 90:10, k = 205 nm), 0.5 mL/min;
tR = minor enantiomer 88.4 min, major enantiomer 99.7 min. HRMS (ESI): calcd
for [M+Na]+ (C16H16N2O6Na) requires m/z 355.0901, found 355.0897.
14. Similar effects have been observed in organocatalytic Mannich-type
reactions see: (a) Westermann, B.; Neuhaus, C. Angew. Chem., Int. Ed. 2005,
44, 4077; (b) Rodriguez, B.; Bolm, C. J. Org. Chem. 2006, 71, 2888; (c)
Ibrahem, I.; Dziedzic, P.; Córdova, A. Synthesis 2006, 4060; (d) Hosseini, M.;
Stiasni, N.; Barbieri, V.; Kappe, O. C. J. Org. Chem. 2007, 72, 1417.
6. For selected reviews on quaternary stereocenters see: (a) Christoffers, J.; Mann,
A. Angew. Chem., Int. Ed. 2001, 40, 4591; (b) Trost, B. M.; Jiang, C. Synthesis 2006,
369; (c) Christoffers, J.; Baron, A. Quaternary Stereocenters: Challenges and
Solutions for Organic Synthesis; Wiley-VCH: Weinheim, 2006; (d) Cozzi, P. G.;
Hilgraf, R.; Zimmermann, N. Eur. J. Org. Chem. 2007, 5969.
7. To the best of our knowledge, there are only a few previous recent examples of
the formation of an all-carbon stereocenter in chiral amine-catalyzed domino
reactions see: Ref. 5w and (a) Rios, R.; Sundén, H.; Vesely, J.; Zhao, G.-L.;
Dziedzic, P.; Córdova, A. Adv. Synth. Catal. 2007, 349, 1028; (b) Penon, O.;
Carlone, A.; Mazzanati, A.; Locatelli, M.; Sambri, L.; Bartoli, G.; Melchiorre, P.
Chem. Eur. J. 2008, 14, 4788; (c) Enders, D.; Wang, C.; Bats, D. W. Angew. Chem.,
Int. Ed. 2008, 47, 3579.
8. (a) Zhao, G.-L.; Vesely, J.; Sun, J.; Christensen, K. E.; Bonneau, C.; Córdova, A.
Adv. Synth. Catal. 2008, 350, 657; For an excellent review on organocatalytic
Michael additions see: (b) Sulzer Mossé, S.; Alexakis, A. Chem. Commun. 2007,
3123; For conjugate addition of ketones see: (c) Betancort, J. M.; Saktihvel, K.;
Thayumanavan, R.; Barbas, C. F., III Tetrahedron Lett. 2001, 42, 4441; (d) Cao, C.-
L.; Sun, X. L.; Zhou, J.-L.; Tang, Y. J. Org. Chem. 2007, 72, 4073.
15. Compound 3c: ½a D25
ꢁ
ꢂ6.4 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3) d 9.43 (d,
J = 2.0 Hz, 1H), 7.34 (d, J = 8.8 Hz, 2H), 7.29–7.27 (m, 2H), 4.24 (d, J = 12.0 Hz,
1H), 3.61 (s, 3H), 3.35 (d, J = 12.0 Hz, 1H), 3.21 (ddt, J = 2.0, 4.0, 12.0 Hz, 1H),
2.40 (br s, 1H), 2.32–2.26 (m, 1H), 2.23–2.17 (m, 1H), 2.03–1.93 (m, 1H), 1.68–
1.59 (m, 1H); 13C NMR (100 MHz, CDCl3) d 200.4, 167.7, 135.0, 133.8, 129.8,
129.5, 116.0, 73.6, 61.5, 53.8, 49.5, 48.0, 30.1, 24.2. The enantiomeric excess
was determined by HPLC with an AD column (n-hexane/i-PrOH = 90:10,
k = 205 nm), 0.5 mL/min; tR = minor enantiomer 39.7 min, major enantiomer
44.1 min. HRMS (ESI): calcd for [M+Na]+ (C16H16ClNO4Na) requires m/z
344.0660, found 344.0657.
16. Compound 3c0: ½a D25
ꢁ
+ 4.7 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3) d 9.39
(d, J = 2.0 Hz, 1H), 7.33–7.28 (m, 4H), 4.40 (t, J = 2.4 Hz, 1H), 3.93 (br s, 1H),
3.82 (d, J = 12.4 Hz, 1H), 3.55 (s, 3H), 3.26–3.18 (m, 1H), 2.18–2.12 (m, 2H),
2.06–1.97 (m, 1H), 1.92–1.87 (m, 1H); 13C NMR (100 MHz, CDCl3) d 200.4,
169.3, 134.8, 134.7, 130.1, 129.3, 116.6, 69.1, 55.1, 53.9, 50.4, 41.9, 27.7,
19.7. The enantiomeric excess was determined by HPLC with an AD column
(n-hexane/i-PrOH = 90:10, k = 205 nm), 0.5 mL/min; tR = minor enantiomer
22.5 min, major enantiomer 29.4 min. HRMS (ESI): calcd for [M+Na]+
(C16H16ClNO4Na) requires m/z 344.0660, found 344.0658.
9. Hayashi, Y.; Okano, T.; Aratake, S.; Hazeland, D. Angew. Chem., Int. Ed. 2007, 46,
4922.
10. (a) Ibrahem, I.; Córdova, A. Angew. Chem., Int. Ed. 2006, 45, 1952; (b) Zhao, G.-L.;
Vesely, J.; Rios, R.; Ibrahem, I.; Sundén, H.; Córdova, A. Adv. Synth. Catal. 2008,
350, 237; (c) Vesely, J.; Ibrahem, I.; Zhao, G. -L.; Rios, R.; Cordova, A. Angew.
Chem., Int. Ed. 2007, 46, 778; (d) Sundén, H.; Rios, R.; Ibrahem, I.; Zhao, G.-L.;
Eriksson, L.; Córdova, A. Adv. Synth. Catal. 2007, 349, 827; (e) Vesely, J.; Rios, R.;
Ibrahem, I.; Zhao, G.-L.; Eriksson, L.; Córdova, A. Chem. Eur. J. 2008, 14, 2693.
17. CCDC 704580 contains the supplementary crystallographic data for this
Letter. These data can be obtained free of charge from The Cambridge