The Journal of Organic Chemistry
Article
tolerance criteria from transition states toward both reactants and
(13) (a) Cozzi, P. G.; Benfatti, F. Angew. Chem., Int. Ed. 2010, 49,
256. (b) Muhlthau, F.; Stadler, D.; Goeppert, A.; Olah, G. A.; Prakash,
G. K. S.; Bach, T. J. Am. Chem. Soc. 2006, 128, 9668.
(14) Assuming pathway 2 (see the Computational Methods), the
relative energies (kcal/mol) of the transition states for these four
cyclohexyl isomers are as follows: cis-3-methyl (0), trans-4-methyl
(1.35), cis-4-methyl (2.02), and trans-3-methyl (2.13). See the
Supporting Information.
products directions using the Gonzalez−Schlegel algorithm.35
ASSOCIATED CONTENT
■
S
* Supporting Information
Copies of NMR spectra for entries in Tables 1 − 5 including
calculations of molar ratios of chlorinated isomers. Computa-
tional details and coordinates for the TSs obtained from the
DM and GM procedures. Movie showing the IRC trajectories
for reactions P2_B and P1_B (reported in Figure 5). This
material is available free of charge via the Internet at http://
(15) Munyemana, F.; Frisque-Hesbain, A.; Devos, A.; Ghosez, L.
Tetrahedron Lett. 1989, 30, 3077.
(16) (a) Lewis, E. S.; Boozer, C. E. J. Am. Chem. Soc. 1952, 74, 308.
(b) Boozer, C. E.; Lewis, E. S. J. Am. Chem. Soc. 1953, 75, 3182.
(17) Walden, P. R. Z. Anorg. Chem. 1900, 25, 209.
(18) Schreiner, P. R.; Schleyer, P. R.; Hill, R. K. J. Org. Chem. 1994,
59, 1849.
(19) (a) Wallis, E. S.; Bowman, P. I. J. Org. Chem. 1936, 1, 383.
(b) Roberts, J. D.; Young, W. G.; Winstein, S. J. Am. Chem. Soc. 1942,
64, 2157. (c) Winstein, S.; Morse, B. K.; Grunwald, E.; Schreiber, K.
C.; Corse, J. J. Am. Chem. Soc. 1952, 74, 1113.
AUTHOR INFORMATION
■
Corresponding Author
(20) Moss, R. A.; Fu, X.; Tian, J.; Sauers, R.; Wipf, P. Org. Lett. 2005,
7, 1371.
(21) Kirchen, R. P.; Ranganayakulu, K.; Sorensen, T. S. J. Am. Chem.
Soc. 1987, 109, 7811.
(22) Rauk, A. R.; Sorensen, T. S.; Schleyer, P. R. J. Chem. Soc., Perkin
Trans. 2 2001, 6, 869.
(23) Sun, X. Symmetry 2010, 2, 201.
́
(24) Henkelman, G.; Jonsson, H. J. Chem. Phys. 1999, 111, 7010.
(25) Heyden, A.; Bell, A. T.; Keil, F. J. J. Chem. Phys. 2005, 123,
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
L.B. thanks the Italian Institute of Technology (IIT) platform
Computation under the IIT seed project MOPROSURF as well
as Dr. Rosa Di Felice and Dr. Stefano Corni for useful
discussions. This work was partially supported by a grant from
the National Institute of Mental Health (MH087932).
224101.
(26) Henkelman, G.; Johannesson, G.; Jon
Condensed Phase Chem. 2002, 269.
́
sson, H. J. Theor. Methods
(27) Kastner, J.; Sherwood, P. J. Chem. Phys. 2008, 128, 14106.
June 2, 2009).
(29) Jensen, F. Introduction to Computational Chemistry; Wiley: New
York, 2007.
(30) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.;
Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.;
Su, S.; et al. J. Comput. Chem. 1993, 14, 1347.
(31) Voter, A. F. Phys. Rev. Lett. 1997, 78, 3908.
(32) Rauk, A.; Sorensen, T. S.; Maerker, C.; de M. Carneiro, J. W.;
Sieber, S.; Schleyer, P. v. R. J. Am. Chem. Soc. 1996, 118, 3761.
(33) Alabugin, I. V.; Manoharan, M. J. Org. Chem. 2004, 69, 9011.
(34) Murtagh, B. A.; Sargent, R. W. H. Comput. J. 1970, 13, 185.
(35) Gonzalez, C.; Schlegel, H. B J. Phys. Chem. 1990, 94, 5523.
(36) Su, P.; Li, H. J. Chem. Phys. 2009, 131, 014102.
(37) Monnier, M.; Aycard, J. P. Can. J. Chem. 1979, 57, 1257.
(38) Heumann, A.; Baeckvall, J. E. Angew. Chem. 1985, 97, 228.
(39) Schneider, H. J.; Hoppen, V. J. Org. Chem. 1978, 43, 3866.
(40) Lippert, G.; Hutter, J.; Parrinello, M. Theor. Chem. Acc. 1999,
103, 124.
REFERENCES
■
(1) (a) Yasuda, M.; Onishi, Y.; Ueba, M.; Miyai, T.; Baba, A. J. Org.
Chem. 2001, 66, 7741. (b) Yasuda, M.; Saito, T.; Ueba, M.; Baba, A.
Angew. Chem., Int. Ed. 2004, 43, 1414.
(2) (a) Comprehensive Organic Transformations, 1st ed.; Larock, R. C.,
Ed.;Wiley-VCH: New York, 1989; p 353. (b) Lewis, E. S.; Boozer, C.
E. J. Am. Chem. Soc. 1952, 74, 308. (c) Hepburn, D. R.; Hudson, H. R.
J. Chem. Soc., Perkin Trans. 1 1976, 754. (d) Gomez, L.; Gellibert, F.;
Wagner, A.; Mioskowski, C. Tetrahedron Lett. 2000, 41, 6049.
(3) For a review of SOCl2, see: Pizey, J. S. Synth. Reagents 1974, 1,
321.
(4) (a) Denton, R. M.; An, J.; Adeniran, B. Chem. Commun. 2010, 46,
3025. (b) Sekar, G.; Nishiyama, H. J. Am. Chem. Soc. 2001, 123, 3603.
(c) Kozikowski, A. P.; Lee, J. Tetrahedron Lett. 1988, 29, 3053.
(5) (a) Lewis, E. S.; Boozer, C. E. J. Am. Chem. Soc. 1952, 74, 308.
(b) Boozer, C. E.; Lewis, E. S. J. Am. Chem. Soc. 1953, 75, 3182.
(c) Lewis, E. S.; Coppinger, G. M. J. Am. Chem. Soc. 1954, 76, 796.
(6) (a) Cram, D. J. J. Am. Chem. Soc. 1953, 75, 332. (b) Cowdrey, W.
A.; Hughes, E. D.; Ingold, C. K.; Masterman, S.; Scott, A. D. J. Chem.
Soc. 1937, 1252. (c) Schreiner, P.; Schleyer, P. R.; Hill, R. K. J. Org.
Chem. 1993, 58, 2822.
(7) (a) Lepore, S. D.; Bhunia, A. K.; Mondal, D.; Cohn, P. C.;
Lefkowitz, C. J. Org. Chem. 2006, 71, 3285. (b) Lepore, S. D.; Mondal,
D.; Li, S. Y.; Bhunia, A. K. Angew. Chem., Int. Ed. 2008, 47, 7511.
(8) Mondal, D.; Bellucci, L.; Lepore, S. D. Eur. J. Org. Chem. 2011,
7057.
(41) See ref 28.
(42) VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.;
Chassaing, T.; Hutter, J. Comput. Phys. Commun. 2005, 167, 103.
(43) Varetto, U. Molekel 5.4.0.8; Swiss National Supercomputing
Centre: Manno (Switzerland).
(44) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14,
33.
(45) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77,
3865.
(46) Martyna, G. J.; Tuckerman, M. E. J. Chem. Phy. 1999, 110, 2810.
(9) Unpublished results.
(10) We also examined chlorination reactions with (+)-neomenthol
and cis-2-methylcyclohexanol where hydroxyl groups are in the axial
position in the preferred conformation. In those cases, addition of
thionyl chloride at 0 °C led to a mixture of elimination and tertiary
chloride products very rapidly. Attempts to form chlorosulfites at −78
°C were unsuccessful.
(11) When treated under typical thionyl chloride conditions
(benzene, rt), this substrate was converted to tertiary chloride as the
major product.
(12) Braddock, D. C.; Pouwer, R. H.; Burton, J. W.; Broadwith, P. J.
Org. Chem. 2009, 74, 6042.
2127
dx.doi.org/10.1021/jo3023439 | J. Org. Chem. 2013, 78, 2118−2127