984
A. Sène et al.
LETTER
L. J. Fluorine Chem. 2005, 126, 63. (f) Ghattas, W.; Hess,
C. R.; Iacazio, G.; Hardré, R.; Klinman, J. P.; Réglier, M.
J. Org. Chem. 2006, 71, 8618. (g) Moreno, B.; Quehen, C.;
Rose-Hélène, M.; Leclerc, E.; Quirion, J.-C. Org. Lett. 2007,
9, 2477. (h) Yang, X.; Yuan, W.; Gu, S.; Yang, X.; Xiao, F.;
Shen, Q.; Wu, F. J. Fluorine Chem. 2007, 128, 540.
(i) Godineau, E.; Schenk, K.; Landais, Y. J. Org. Chem.
2008, 73, 6983. (j) Leung, L.; Linclau, B. J. Fluorine Chem.
2008, 129, 986.
However, this radical-conjugated addition was limited
since no addition was observed, neither from (E)-cinnam-
aldehyde nor from (E)-4-phenyl-butenone. The substitu-
tion of the double bond appeared as a limiting parameter.
These unexpected results raise the question concerning
the electronic character of the phosphonodifluoromethyl
radical. As speculated earlier, the electronic character of
the difluoroalkyl radical should be dominated by the in-
ductive effect of the fluorine atoms, but the influence of
the fluorine lone pairs adjacent to the carbon-centered rad-
ical play a major role, giving it rather a nucleophilic char-
acter.16 Although no theoretical data are available, it
might be tempting to speculate that the phosphonodifluo-
roalkyl radical exhibit an electrophilic/nucleophilic char-
acter. The phosphonoester function play a crucial role
since traces of adduct were detected in the crude mixture
when the reaction was realized from BrCF2CO2Et in the
presence of Et3B (18 h at 20 °C).
In conclusion, this radical-conjugated addition17 opened a
new and attractive alternative to prepare secondary phos-
phonates taking into account that only few examples of
the anionic version of this reaction are known.18 This re-
sult comes to complement the panel of addition of fluori-
nated free radicals onto electron-deficient alkenes
reported in the literature.16 Investigations to prepare im-
portant analogues of nucleotides and cyclitols from func-
tionalized cyclic enones are under way.
(3) (a) Yang, Z.; Burton, D. J. Tetrahedron Lett. 1991, 32,
1019. (b) Yang, Z.; Burton, D. J. J. Org. Chem. 1992, 57,
4676.
(4) Hu, C.; Chen, J. J. Chem. Soc., Perkin Trans. 1 1993, 327.
(5) (a) Lequeux, T.; Lebouc, F.; Lopin, C.; Yang, H.; Gouhier,
G.; Piettre, S. Org. Lett. 2001, 3, 185. (b) Pignard, S.;
Lopin, C.; Gouhier, G.; Piettre, S. R. J. Org. Chem. 2006, 71,
31. (c) Murakami, S.; Kim, S.; Ishii, H.; Fuchigami, T.
Synlett 2004, 815.
(6) (a) Huang, B.; Wu, F.; Zhou, C. J. Fluorine Chem. 1995, 75,
1. (b) Wu, F.; Huang, B.; Lu, L.; Huang, W. J. Fluorine
Chem. 1996, 80, 91. (c) Petrik, V.; Cahard, D. Tetrahedron
Lett. 2007, 48, 3327. (d) Li, Y.; Li, H.; Hu, J. Tetrahedron
2009, 65, 478.
(7) Li, A.; Chen, Q. Synthesis 1996, 606.
(8) Yang, X.; Zhu, Y.; Fang, X.; Yang, X.; Wu, F.; Shen, Y.
J. Fluorine Chem. 2007, 128, 174.
(9) Nair, K. D.; Guneratne, R. D.; Modak, A. S.; Burton, D. J.
J. Org. Chem. 1994, 59, 2393.
(10) Henry-dit-Quesnel, A.; Toupet, L.; Pommelet, J.-C.;
Lequeux, T. Org. Biomol. Chem. 2003, 1, 2486.
(11) The elimination of HI was also observed when crude 5b was
treated with DBU in CH2Cl2 over 2 h at 20 °C.
(12) Xu, Y.; Prestwich, G. D. Org. Lett. 2002, 4, 4021.
(13) Li, Y.; Liu, J.; Zhang, L.; Zhu, L.; Hu, J. J. Org. Chem. 2007,
72, 5824.
(14) Chambers, R. D.; Jaouhari, R.; O’Hagan, D. Tetrahedron
1989, 45, 5101.
(15) (a) Quiclet-Sire, B.; Zard, S. Z. J. Am. Chem. Soc. 1996, 118,
9190. (b) Studer, A.; Amrein, S. Synthesis 2002, 835.
(c) Jean-Baptiste, L.; Yemets, S.; Legay, R.; Lequeux, T.
J. Org. Chem. 2006, 71, 2352.
Acknowledgment
This work has been performed through the interregional Norman
Chemistry Network (CRUNCh), the ‘Région Haute-Normandie’,
the ‘Region Basse-Normandie’, European funding (Erasmus pro-
gram of the University of Chemnitz) and the ‘Ministère de l’Enseig-
nement Supérieur et de la Recherche’ are gratefully thanks for their
financial support.
(16) (a) Buttle, L. A.; Motherwell, W. B. Tetrahedron Lett. 1994,
35, 3995. (b) Dolbier, W. R. Chem. Rev. 1996, 96, 1557.
(17) Srikanth, G. S. C.; Castle, S. L. Tetrahedron 2005, 61,
10377.
(18) (a) Lequeux, T. P.; Percy, J. M. J. Chem. Soc., Chem.
Commun. 1995, 2111. (b) Kawamoto, A. M.; Campbell,
M. M. J. Chem. Soc., Perkin Trans. 1 1997, 1249.
(c) Murano, T.; Muroyama, S.; Yokomatsu, T.; Shibuya, S.
Synlett 2002, 1657. (d) Hikishima, S.; Isobe, M.; Koyanagi,
S.; Soeda, S.; Shimeno, H.; Sibuya, S.; Yokomatsu, T.
Bioorg. Med. Chem. 2006, 14, 1660.
(19) Typical Procedure for the Synthesis of Phosphonate 12a
To a solution of the 2-cyclohexenone (0.073 mL, 0.76
mmol) and iodo-difluoromethylphosphonate 2 (200 mg,
0.58 mmol) in CH2Cl2 (5 mL) at 20 °C under N2 was slowly
added a solution of Et3B (0.058 mL, 1 M in n-hexane).
Addition of Et3B (5 × 0.058 mL) was realized every 1 h until
complete consumption of the iodophosphonate. After 6 h
under stirring, the solvents were evaporated under reduced
pressure, and the crude mixture was purified by flash column
chromatography (n-C5H12–EtOAc, 3:2) to afford the
phosphonoketone 12a (125 mg, 69%). 1H NMR (250 MHz,
CDCl3): d = 1.30 (d, 3JHH = 6.2 Hz, 12 H), 1.53–1.67 (m, 2
H), 2.05–2.61 (m, 7 H), 4.78 (dsept, 3JHH = 3JHP = 6.2 Hz, 2
H). 19F NMR (235 MHz, CDCl3): d = –115.7 (ddd, 2JFF = 299
Hz, 2JFP = 108 Hz, 3JFH = 13 Hz), –118.14 (ddd, 2JFF = 299
References and Notes
(1) (a) Blackburn, G. M.; England, D. A.; Kolkmann, F.
J. Chem. Soc., Chem. Commun. 1981, 930. (b) Blackburn,
G. M.; Kent, D. E.; Kolkmann, F. J. Chem. Soc., Perkin
Trans. 1 1984, 1119. (c) Thatcher, G. R.; Campbell, A. S.
J. Org. Chem. 1993, 58, 2272. (d) Chambers, R. D.;
O’Hagan, D.; Lamont, R. B.; Jain, S. C. J. Chem. Soc.,
Chem. Commun. 1990, 1053. (e) Kim, C. U.; Luh, B. Y.;
Misco, P. F.; Bronson, J. J.; Hitchcock, M. J. M.; Ghazoulli,
I.; Matin, J. C. J. Med. Chem. 1990, 33, 1207. (f) Smyth,
M. S.; Ford, H.; Burke, T. R. Tetrahedron Lett. 1992, 33,
4137. (g) Jakeman, D. L.; Ivory, A. J.; Williamson, M. P.;
Blackburn, G. M. J. Med. Chem. 1998, 41, 4439.
(h) Berkowitz, D. B.; Bose, M.; Pfannenstiel, T. J.; Doukov,
T. J. Org. Chem. 2000, 65, 4498. (i) Berkowitz, D. B.;
Bose, M. J. Fluorine Chem. 2001, 112, 13. (j)O’Hagan, D.;
Rzepa, H. S. Chem. Commun. 1997, 645.
(2) (a) Yang, Z.-Y.; Burton, D. J. J. Org. Chem. 1991, 56, 5125.
(b) Julià, L.; Bosch, M. P.; Rodriguez, S.; Guerrero, A.
J. Org. Chem. 2000, 65, 5098. (c) Sato, K.; Nakazato, S.;
Enko, H.; Tsujita, H.; Fujita, K.; Yamamoto, T.; Omote, M.;
Ando, A.; Kumadaki, I. J. Fluorine Chem. 2003, 121, 105.
(d) Sato, K.; Omote, M.; Ando, A.; Kumadaki, I. J. Fluorine
Chem. 2004, 125, 509. (e) Xiao, F.; Wu, F.; Shen, Y.; Zhou,
Synlett 2009, No. 6, 981–985 © Thieme Stuttgart · New York