reactions are generally low within unsymmetrical alkynes
giving rise to regioisomeric mixtures of triazoles until
recently.12 In addition, the low molecular weight organic
azides are sometimes unstable and difficult to handle.13
Therefore, it is highly desirable to develope more efficient
synthetic and operationally simple methodologies used for
synthesizing a diverse array of [1,2,3]-triazoles.
Many new methods of synthesizing 1,2,3-triazoles were
developed in the past two years inspired by the “click”
chemistry and their broad application in many fields.14
However, most of these developed methods are for N-
substituted 1,2,3-triazoles, and only a few are for N-
unsubstituted 1,2,3-triazoles which also have wide utilities.15
Thus, it is very necessary and complementary to find novel
ways of synthesizing N-unsubstituted 1,2,3-triazoles in the
future. In this paper, an efficient, convenient and safe one-
pot procedure was developed to synthesize 4,5-disubstituted-
1,2,3-(NH)-triazoles through palladium-catalyzed and ultra-
sonic promoted Sonogashira coupling/1,3-dipolar cycloaddition
of acid chlorides, terminal acetylenes and sodium azide.
Enlightened by the application of Sonogashira coupling
in one-pot synthetic organic processes,16 it was assumed that
a three-component reaction of acid chlorides, terminal
acetylenes and sodium azide would provide an efficient route
for the synthesis of 4,5-disubstituted-1,2,3-(NH)-triazoles. In
our starting experiments, where phenyl acetylene, benzoyl
chloride, sodium azide were put in one pot with the catalyst
of PdCl2(PPh3)2 (1 mmol %)/CuI (2 mmol %) and the base
Et3N together in various solution(Et3N, dioxane, toluene,
THF, DMSO), and reacted under nitrogen at room temper-
ature (rt) for 24 h, we only achieved trace of the triazole 3a
and byproducts. In the latter experiments, where phenyl
acetyleneandbenzoylchloridewerecatalyzedbyPdCl2(PPh3)2/
CuI and promoted by ultrasonic (32 kHz, 160 W) at rt in
advance, followed by NaN3-1,3-dipolar cycloaddition in
DMSO, 4,5-disubstituted-1,2,3-(NH)-triazoles, 3a was ob-
tained with 98% isolated yield (Table 1, entry 1). The impact
(7) (a) Sivakumar, K.; Xie, F.; Cash, B. M.; Long, S.; Barnhill, H. N.;
Wang, Q. Org. Lett. 2004, 6, 4603. (b) Agard, N. J.; Prescher, J. A.; Bertozzi,
C. R. J. Am. Chem. Soc. 2004, 126, 15046. (c) Costa, M. S.; Boechat, N.;
Rangel, E. A.; Da Silva, F. D.; de Souza, A. M. T.; Rodrigues, C. R.; Castro,
H. C.; Junior, I. N.; Lourenco, M. C. S.; Wardell, S.; Ferreira, V. F. Bioorg.
Med. Chem. 2006, 14, 8644. (d) Moorhouse, A. D.; Santos, A. M.;
Gunaratnam, M.; Moore, M.; Neidle, S.; Moses, J. E. J. Am. Chem. Soc.
2006, 128, 15972. (e) Kumar, R.; El-Sagheer, A.; Tumpane, J.; Lincoln,
P.; Wilhelmsson, L. M.; Brown, T. J. Am. Chem. Soc. 2007, 129, 6859. (f)
Bock, V. D.; Speijer, D.; Hiemstra, H.; van Maarseveen, J. H. Org. Bio.
Chem. 2007, 5, 971.
(8) (a) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel,
A.; Voit, B.; Pyun, J.; Fre’chet, J. M. J.; Sharpless, K. B.; Fokin, V. V.
Angew. Chem., Int. Ed. 2004, 43, 3928. (b) Aucagne, V.; Ha”nni, K. D.;
Leigh, D. A.; Lusby, P. J.; Walker, D. B. J. Am. Chem. Soc. 2006, 128,
2186. (c) Ye, C. F.; Gard, G. L.; Winter, R. W.; Syvret, R. G.; Twamley,
B.; Shreeve, J. M. Org. Lett. 2007, 9, 3841. (d) Liu, Q. C.; Zhao, P.; Chen,
Y. M. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 3330. (e) Ye, C. F.;
Gard, G. L.; Winter, R. W.; Syvret, R. G.; Twamley, B.; Shreeve, J. M.
Org. Lett. 2007, 9, 3841. (f) Nandivada, H.; Jiang, X. W.; Lahann, J. AdV.
Mater. 2007, 19, 2197. (g) Angelos, S.; Yang, Y. W.; Patel, K.; Stoddart,
J. F.; Zink, J. I. Angew. Chem., Int. Ed. 2008, 45, 1435.
Table 1. Screening the Impact of Bases, Solutions and
Catalystsa
(9) (a) Kolb, H. C.; Sharpless, K. B. Drug DiscoVery Today 2003, 8,
1128. (b) Manetsch, R.; Krasiski, A.; Radi, Z.; Raushel, J.; Taylor, P.;
Sharpless, K. B.; Kolb, H. C. J. Am. Chem. Soc. 2004, 126, 12809. (c)
Whiting, M.; Muldoon, J.; Lin, Y. C.; Silverman, S. M.; Lindstrom, W.;
Olson, A. J.; Kolb, H. C.; Finn, M. G.; Sharpless, K. B.; Elder, J. H.; Fokin,
V. V. Angew. Chem., Int. Ed. 2006, 45, 1435. (d) Wang, J.; Sui, G.;
Mocharla, V. P.; Lin, R. J.; Phelps, M. E.; Kolb, H. C.; Tseng, H.-R. Angew.
Chem., Int. Ed. 2006, 45, 5276. (e) Sugawara, A.; Sunazuka, T.; Hirose,
T.; Nagai, K.; Yamaguchi, Y.; Hanaki, H.; Sharpless, K. B.; Omura, S.
Bioorg. Med. Chem. Lett. 2007, 17, 6340. (f) Chen, H.; Taylor, J. L.;
Abrams, S. R. Bioorg. Med. Chem. Lett. 2007, 17, 1979. (g) Moorhouse,
A. D.; Moses, J. E. Chemmedchem 2008, 3, 715. (h) Tron, G. C.; Pirali,
T.; Billington, R. A.; Canonico, P. L.; Sorba, G.; Genazzani, A. A. Med.
Res. ReV. 2008, 28, 278.
yield
entry
cat.(mmol %)
solvent
base
(%)b
1
PdCl2(PPh3)2(1)/CuI(2) DMSO
PdCl2(PPh3)2(1)/CuI(2) DMSO
PdCl2(PPh3)2(1)/CuI(2) DMSO
PdCl2(PPh3)2(1)/CuI(2) DMSO
PdCl2(PPh3)2(1)/CuI(2) DMF
PdCl2(PPh3)2(1)/CuI(2) Dioxane
PdCl2(PPh3)2(1)/CuI(2) Enthanol
PdCl2(PPh3)2(1)/CuI(2) CHCl3
PdCl2(PPh3)2(1)/CuI(2) THF
PdCl2(PPh3)2(1)/CuI(2) acetonitrile
Et3N
pyridine
98
2
trace
3
diisopropylamine 70
(10) (a) Wacharasindhu, S.; Bardhan, S.; Wan, Z.-K.; Tabei, K.;
Mansour, T. S. J. Am. Chem. Soc. 2009, 131, 4174. (b) Liu, Y.; Yan, W.;
Chen, Y.; Petersen, J. L.; Shi, X. Org. Lett. 2008, 10, 5385. (c) Katritzky,
A. R.; Bobrov, S.; KirichenkoKostyantyn; Ji, Y.; Steel, P. J. J. Org. Chem.
2003, 68, 5713. (d) Reid, A. K.; McHugh, C. J.; Richie, G.; Graham, D.
Tetrahedron Lett. 2006, 47, 4201. (e) Verma, A. K.; Singh, J.; Chaudhary,
R. Tetrahedron Lett. 2007, 48, 7199. (f) Dai, Q.; Gao, W.; Liu, D.; Kapzes,
L. M.; Zhang, X. J. Org. Chem. 2006, 71, 3928.
4
tert-butylamine trace
5
Et3N
-
92
6
45
7
-
35
8
-
40
9
-
20
10
11
12
13
14
15
16
-
30
PdCl2(5)
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
-
90
(11) Selected examples of methods of synthesizing 1,2,3-triazoles: (a)
Journet, M.; Cai, D.; Kowal, J. J.; Larsen, R. D. Tetrahedron Lett. 2001,
42, 9117. (b) Coats, S. J.; Link, J. S.; Gauthier, D.; Hlasta, D. J. Org. Lett.
2005, 7, 1469. (c) Gracias, V.; Darczak, D.; Gasiecki, A. F.; DjuricMax,
S. W. Tetrahedron Lett. 2005, 46, 9053. (d) Majireck, M.; Weinreb, S. M.
J. Org. Chem. 2006, 71, 8680. (e) Aucagne, V.; Leigh, D. A. Org. Lett.
2006, 8, 4505. (f) Boren, B. C.; Narayan, S.; Rasmussen, L. K.; Zhang, L.;
Zhao, H.; Lin, Z.; Jia, G.; Fokin, V. J. Am. Chem. Soc. 2008, 130, 8923.
(12) (a) Hlasta, D. J.; Ackerman, J. H. J. Org. Chem. 1994, 59, 6184.
(b) Sasaki, T.; Eguchi, S.; Yamaguchi, M.; Esaki, T. J. Org. Chem. 1981,
46, 1800. (c) Howell, S. J.; Spencer, N.; Philp, D. Tetrahedron 2001, 57,
4945.
Pd/C(5)
-
trace
trace
70
CuI(5)
-
Pd(PPh3)4(5)
Pd(dba)2(5)
PdCl2(PPh3)2(5)
-
-
65
trace
-
a The reaction was carried out with 1a (0.5 mmol), 2a (0.5 mmol) and
Et3N (3 equiv, 1.5 mmol) in the presence of catalyst promoted by ultrasonic
(32 kHz, 160 W) at room temperature for 1 h first under nitrogen, then
NaN3 (1.2 equiv, 0.6 mmol) and 1 mL solvent was added to the mixture
and the reaction continued at rt for one more hour. b Isolated yields after
column chromatography.
(13) Eric, F. V. Scriven; Kenneth, Turnbull. Chem. ReV. 1988, 88, 297.
(14) Selected examples of methods of synthesizing 1,2,3-triazoles: (a)
Rasmussen, L. K.; Boren, B. C.; Fokin, V. V. Org. Lett. 2007, 9, 5337. (b)
Kalisiak, J.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2008, 10, 3171. (c)
Sengupta, S.; Duan, H.; Lu, W.; Petersen, J. L.; Shi, X. Org. Lett. 2008,
10, 1493. (d) Balducci, E.; Bellucci, L.; Petricci, E.; Taddei, M.; Tafi, A.
J. Org. Chem. 2009, 74, 1314. (e) Zhang, F.; Moses, J. E. Org. Lett. 2009,
11, 1587. (f) Yang, D.; Fu, N.; Liu, Z.; Li, Y.; Chen, B. Synlett 2007, 278.
of bases, solvents and catalystes was investigated in detail
for the reaction (Table 1). When using other bases, the
reaction gave low yields (Table 1, entries 2, 3, 4). The
reaction can be performed in various solutions including
Org. Lett., Vol. 11, No. 14, 2009
3025