S. Biswas, S. Maiti, U. Jana
FULL PAPER
4470; h) E.-I. Negishi, L. Anastasia, Chem. Rev. 2003, 103,
1979–2018.
various substituted vinylic chlorides and bromides, which
represents an excellent complement to the previously re-
ported method by Kabalka et al. and others. In comparison
to recently reported methods[14] our reaction conditions are
more efficient and general, as propargylic and allylic
alcohols also worked under our reaction conditions.
Furthermore, other notable advantages of this method in-
clude operational simplicity (one-pot reaction, without re-
moval of air or moisture), mild reaction conditions (room
temperature), use of inexpensive and nontoxic iron salts,
and direct use of alcohols (highly atom economic). Con-
sidering all these, this method is energy saving and environ-
mentally friendly. In addition, as a result of the availability
of all the starting materials, this reaction may prove very
useful in organic synthesis. Further studies to explore the
reaction mechanism and scope of this reaction are in pro-
gress in our laboratory.
[3]
a) S. P. Stanforth in Comprehensive Organic Functional Group
Transformation II (Eds.: A. R. Katritzky, R. J. K. Taylor), El-
sevier, Oxford 2005, p. 1025; b) A. B. Dounay, L. E. Overman,
Chem. Rev. 2003, 103, 2945–2964; c) M. C. Wills, J. Chauhan,
W. G. Whittingham, Org. Biomol. Chem. 2005, 3, 3094–3095;
d) M. Durandetti, J. Perichon, Synthesis 2004, 3079–3083; e)
M. Mori in Handbook of Organopalladium Chemistry for Or-
ganic Synthesis (Ed.: E. Negishi), Wiley, Hoboken, NJ, 2002,
p. 1213; f) J. Blum, D. Gelman, W. Baidossi, E. Shakh, A. Ro-
senfeld, B. C. Wassermann, M. Frick, B. Heymer, S. Schutte,
S. Wrenik, H. Schumann, J. Org. Chem. 1997, 62, 8681–8686.
a) A. Spaggiari, D. Vaccari, P. Davoli, G. Torre, F. Prati, J. Org.
Chem. 2007, 72, 2216–2219 and references cited therein; b) A.
Lilienkampf, M. P. Johansson, K. Wähälä, Org. Lett. 2003, 5,
3387–3390 and references cited therein; c) J. Kagan, S. K.
Arora, M. Bryzgis, S. N. Dhawan, K. Reid, S. P. Singh, L. Tow,
J. Org. Chem. 1983, 48, 703–706; d) S. Hirsl-Starcevic, Z. Ma-
jerski, J. Org. Chem. 1982, 47, 2520–2525; e) T. Eszenyi, T.
Timar, P. Sebok, Tetrahedron Lett. 1991, 32, 827–828; f) R. S.
Al-awar, S. P. Joseph, D. L. Comins, J. Org. Chem. 1993, 58,
7732–7739.
[4]
[5]
[6]
a) G. Stork, K. Zhao, Tetrahedron Lett. 1989, 30, 2173–2174;
b) D. Seyferth, J. K. Heeren, G. Singh, S. O. Grim, W. B.
Hughes, J. Organomet. Chem. 1966, 5, 267–274; c) D. F. Taber,
R. P. Meagley, D. J. Doren, J. Org. Chem. 1996, 61, 5723–5728;
d) M. Matsumoto, K. Kuroda, Tetrahedron Lett. 1980, 21,
4021–4024; e) R. Batti, D. K. Barma, U. M. Krishna, C. Mios-
kowski, J. R. Falck, Tetrahedron Lett. 1980, 21, 4021–4024.
a) M.-E. Lebrun, P. L. Marquand, C. Berthelette, J. Org. Chem.
2006, 71, 2009–2013; b) S. Surprenant, W. Y. Chan, C. Ber-
thelette, Org. Lett. 2003, 5, 4851–4854.
Experimental Section
Representative Experimental Procedure for the Synthesis of (3-Chlo-
roprop-2-ene-1,1,3-triyl)tribenzene (3a): To a stirred solution of
anhydrated ferric chloride (0.4 mmol) and benzhydrol (2a; 1 mmol)
in dry dichloromethane (3 mL) was added phenylacetylene (1a;
1 mmol). The reaction mixture was stirred vigorously at room tem-
perature, keeping the container tightly closed with a glass stopper.
After completion of the reaction (by TLC), dichloromethane was
evaporated under reduced pressure and the residue was purified by
silica-gel (60–120 mess) column chromatography (petroleum ether)
to afford a mixture of E and Z isomers of desired product 3a (E:Z,
91:9) as a white solid (0.68 mmol, 68%). 1H NMR (300 MHz,
CDCl3): δ = 4.80 (d, J = 11.0 Hz, 1 H, 3a-E, 3-H), 5.44 (d, J =
9.5 Hz, 1 H, 3a-Z, 3-H), 6.47 (d, J = 11.0 Hz, 1 H, 3a-E, 2-H),
6.63 (d, J = 9.5 Hz, 1 H, 3a-Z, 2-H), 7.13–7.38 (m, 15 H, 3a-E,
arom-H; m, 15 H, 3a-Z, arom-H) ppm. 13C NMR (75 MHz,
CDCl3): δ = 50.7, 50.8, 126.7, 128.2, 128.3, 128.4, 128.7, 128.7,
128.9, 129.6, 131.4, 131.5, 136.9, 143.0, 143.4 ppm.[9c]
[7]
[8]
a) W. Su, C. Jin, Org. Lett. 2007, 9, 993–996 and references
cited therein.
a) P. J. Kropp, K. A. Daus, S. D. Crawford, M. W. Tubergen,
K. D. Kepler, S. L. Craig, V. P. Wilson, J. Am. Chem. Soc. 1990,
112, 7433–7434; b) M. Hanack, E. Weber, Chem. Ber. 1983,
116, 777–797; c) H. Mayer, J. L. Gonzalez, K. Luedtke, Chem.
Ber. 1994, 127, 525–531.
a) G. W. Kabalka, M. Yao, S. Borella, Z. Wu, Chem. Commun.
2005, 2492–2494; b) G. W. Kabalka, M. Yao, S. Borella, Z. Wu,
Org. Lett. 2005, 7, 2865–2867; c) G. W. Kabalka, M. Yao, S.
Borella, J. Am. Chem. Soc. 2006, 128, 11320–11321; d) G. W.
Kabalka, Z. Wu, Y. Ju, Org. Lett. 2004, 6, 3929–3931.
For general reviews, see: a) A. Correa, O. G. Mancheno, C.
Bolm, Chem. Soc. Rev. 2008, 37, 1108–1117; b) B. D. Sherry,
A. Früstner, Acc. Chem. Res. 2008, 41, 1500–1511; c) C. Bolm,
J. Legros, J. L. Paih, L. Zani, Chem. Rev. 2004, 104, 6217–6254;
d) A. Früstner, R. Martin, Chem. Lett. 2005, 34, 624–629; e)
D. D. Diaz, P. O. Miranda, J. I. Padrón, V. S. Martin, Curr.
Org. Chem. 2006, 10, 457–476.
For a few recent examples of the catalytic activation of
alcohols, see: a) H. Qin, N. Yamagiwa, S. Matsunga, M. Shiba-
ski, Angew. Chem. Int. Ed. 2007, 46, 409–413; b) S. Shirakawa,
K. Shu, Org. Lett. 2007, 9, 311–314; c) R. Sanz, A. Martínez,
D. Miguel, J. M. Álveraz-Gutiérrez, F. Rodríguez, Adv. Synth.
Catal. 2006, 348, 1841–1845 and references cited therein; d) M.
Yasuda, T. Somyo, A. Baba, Angew. Chem. Int. Ed. 2006, 45,
793–796; e) K. Sonogashira, Y. Inada, Y. Nishibayashi, M. Hi-
dai, S. Uemura, J. Am. Chem. Soc. 2002, 124, 15172–15173.
For the FeCl3-catalyzed activation of alcohols, see: a) U. Jana,
S. Maiti, S. Biswas, Tetrahedron Lett. 2008, 49, 858–862; b) U.
Jana, S. Maiti, S. Biswas, Tetrahedron Lett. 2007, 48, 7160–
7163; c) U. Jana, S. Biswas, S. Maiti, Tetrahedron Lett. 2007,
48, 4065–4069.
[9]
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details and spectroscopic data of all compounds.
[10]
Acknowledgments
We are pleased to acknowledge the financial and infrastructural
assistance from the UGC-CAS programme of the Department of
Chemistry, Jadavpur University. S. B. and S. M. are also thankful
to University Grants Commission (UGC), New Delhi, India and
Jadavpur University, respectively, for their fellowships.
[11]
[1] U. Jana, S. Biswas, S. Maiti, Eur. J. Org. Chem. 2008, 5798–
5800.
[2] a) E. F. Corsico, R. A. Rossi, J. Org. Chem. 2004, 69, 6427–
6432; b) C. R. V. Reddy, S. Urgaonkar, J. G. Verkade, Org. Lett.
2005, 7, 4427–4430; c) K. C. Nicolaou, P. G. Bulger, D. Sarlah,
Angew. Chem. Int. Ed. 2005, 44, 4442–4489; d) recent review on
Stille coupling reactions: P. Espinet, A. M. Echavarren, Angew.
Chem. Int. Ed. 2004, 43, 4704–4734 and references cited
therein; e) S. Kotha, K. Lahiri, D. Kashinath, Tetrahedron
2002, 58, 9633–9695; f) review on Suzuki coupling reactions:
N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–2483; g) K.
Sonogashira, Y. Tohda, N. Hagihara, Synthesis 1975, 16, 4467–
[12]
[13]
a) J. Kischel, K. Mertins, D. Michalik, A. Zapf, M. Beller, Adv.
Synth. Catal. 2007, 349, 865–870; b) Z.-P. Zhan, J.-L. Yu, Y.-
Y. Cui, R.-F. Yang, W.-Z. Yang, J.-P. Li, J. Org. Chem. 2006,
71, 8298–8301; c) I. Iovel, M. Kristin, J. Kischel, A. Zapf, B.
2358
www.eurjoc.org
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2009, 2354–2359