3
Substrate scope for the preparation of 3 substituted indolesabc
In conclusion, we developed a highly efficient, short and green
method for the synthesis of 3-amino-alkylated indole via one-pot
three-component Mannich3d, 3g, 3m type reaction. The Mannich-
type reactions are very important carbon–carbon bond-forming
reactions in organic synthesis. It is easy and safe to handle at a
large scale synthesis for preparation of the final product make
R'
(Fe(NO3)3.9H2O/
TEMPO), KOH
N
H
CH3
N
R
R''
N
4
H3C
HO
R
+
NH
H3C
R'
R''
2
1
N
3
H
this an attractive protocol by using insitu iminium ion formation.
5
Acknowledgments
N
We sincerely thank SAIF, Punjab University, Chandigarh, for
providing microanalyses and spectra. Vinay K. Singh is grateful
to the UGC, New Delhi, for the award of a DS Kothari
postdoctoral fellowship and financial support.
N
N
N
H
O2N
N
H
5b
N
H
5c
38 h, (80%)
5d
39 h, (84%)
39 h, (87%)
Supplementary data
N
N
N
Supplementary data (detailed experimental procedures, product
characterization, and NMR spectra of the products) associated with this
article can be found, in the online version.
N
H
N
H
MeO
OH
N
H
5f
Cl
5e
5g
36 h, (84%)
38 h, (85%)
34 h, (82%)
References and notes
1.
2.
(a) Zhou, Y. J.; Chen, D. S.; Li, Y. L.; Liu, Y.; Wang, X. S. ACS
Comb. Sci. 2013, 15, 498; (b) Azizi, N.; Aryanasab, F.; Saidi, M.
R. Org. Lett. 2006, 23, 5275.
N
N
N
N
N
H
N
H
For recent reviews on multicomponent reactions see: (a)
Domling, A. Chem. Rev. 2006, 106, 17; (b) Ramon, D. J.; Yus,
M. Angew. Chem., Int. Ed. 2005, 44, 1602; (c) Domling, A.;
Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168; (d) Tejedor, D.;
Garcia-Tellado, F. Chem. Soc. Rev. 2007, 36, 484; (e) Hulme,
C.; Gore, J. Curr. Med. Chem. 2003, 10, 51; (f) Orru, R. V. A.;
De Greef, M. Synthesis 2003, 1471; (g) Jacobi von Wangelin,
A.; Neumann, H.; Gordes, D.; Klaus, S.; Strubing, D.; Beller, M.
Chem. Eur. J. 2003, 9, 4286; (h) Nair, V.; Rajesh, C.; Vinod, A.
U.; Bindu, S.; Sreekanth, A. R.; Mathen, J. S.; Balagopal, L.
Acc. Chem. Res. 2003, 36, 899; (i) Zhu, J. Eur. J. Org. Chem.
2003, 1133; (j) Simon, C.; Constantieux, T.; Rodriguez, J. Eur. J.
Org. Chem. 2004, 4957;(k) Tempest, P. Curr. Opin. Drug
Discovery Dev. 2005, 8, 776.
(a) Smith, A. B., III; Kanoh, N.; Minakawa, N.; Rainier, J. D.;
Blase, F. R.; Hartz, R. A. Org. Lett. 1999, 1, 1263; (b) Kumar,
A.; Gupta, M. K.; Kumar, M. Green Chem. 2012, 14, 290; (c)
Kumar, A.; Gupta, M. K.; Kumar, M.; Saxena, D. RSC Adv.
2013, 3, 1673; (d) Srihari, P.; Singh, V. K.; Bhunia, D. C.;
Yadav, J. S. Tetrahedron Lett. 2009, 50, 3763; (e) Kundu, D.;
Bagdi, A. K.; Majee, A.; Hajra, A. Synlett 2011, 1165; (f) Das,
B.; Kumar, J. N.; Kumar, A. S.; Damodar, K. Synthesis 2010,
914; (g) Rao, V. K.; Chhikara, B. S.; Shirazi, A. N.; Tiwari, R.;
Parang, K.; Kumar, A. Bioorg. Med. Chem. Lett. 2011, 21, 3511;
(h) Goswami, S. V.; Thorat, P. B.; Kadam, V. N.; Khiste, S. A.;
Bhusare, S. R. Chin. Chem. Lett. 2013, 24, 422; (i) Devi, C. L.;
Rao, V. J.; Palaniappan, S. Synth. Commun. 2012, 42, 1593; (j)
Yadav, D. K.; Patel, R. Srivastava, V. P.; Watal, G.; Yadav, L.
D. S. Tetrahedron Lett. 2010, 51, 5701; (k) Mi, X.; Luo, S.; Hea,
J.; Cheng, J. P. Tetrahedron Lett. 2004, 45, 4567; (l) Shirakawa,
S.; Kobayashi, S. Org. Lett. 2006, 8, 4939; (m) Rajesh, U. C.;
Kholiya, R.; Pavan, V. S; Rawat, D. S. Tetrahedron Lett. 2014,
55, 2977; (n) Ottoni, O.; Neder, A. V. F.; Bias, A. K. B.; Cruz,
R. P. A.; Aquino, L. B. Org. Lett.2001, 3, 1005.
(a) Dondoni, A.; Massi, A.; Sabbatini, S.; Bertolasi, V. J. Org.
Chem. 2002, 67, 6979; (b) Lin, C.; Fang, H.; Tu, Z.; Liu, J.-T.;
Yao, C.-F. J. Org. Chem. 2006, 71, 6588; (c) Evdokimov, N. M.;
Magedov, I. V.; Kireev, A. S.; Kornienko, A. Org. Lett. 2006, 8,
899; (d) Dardennes, E.; Kovacs-Kulyassa, A.; Boisbrun, M.;
Petermann, C.; Laronze, J.-Y.; Sapi, J. Tetrahedron: Asymmetry
2005, 16, 1329; (e) Dardennes, E.; Kovacs-Kulyassa, A.;
Renzetti, A.; Sapi, J.; Laronze, J.-Y. Tetrahedron Lett. 2003, 44,
221.
(a) Jiang, B.; Yang, C.-G.; Wang, J. J. Org. Chem. 2001, 66, 4865;
(b) Zhang, H.; Larock, R. C. Org. Lett. 2001, 3, 308; (c)
Sakagami, M.; Muratake, H.; Natsume, M. Chem. Pharm. Bull.
1994, 42, 1393; (d) Fukuyama, T.; Chen, X. J. Am. Chem. Soc.
1994, 116, 3125;
5j
5h
5i
38 h, (79%)
34 h, (86%)
35 h, (80%)
OMe
Br
N
N
N
N
N
5l
N
H
Cl
5m
5k
35 h, (83%)
32 h, (87%)
38 h, (84%)
O
N
3.
Br
OMe
N
N
MeO
N
N
H
N
H
Cl
H
5p
5o
5n
36 h, (84%)
38 h, (80%)
36 h, (87%)
Br
N
N
N
O
N
O
Cl
NH
5s
Cl
N
H
33 h, (81%)
H
5r
5q
38 h, (85%)
35 h, (82%)
O
O
N
N
Br
N
N
O
N
N
H
H
4
H
5v
5u
5t
38 h, (80%)
38 h, (84%)
36h, ( 80%)
———
a For experimental procedure, see supporting information.
b
All compounds are known and were characterized by
comparison of their spectral data with those reported in the
literature.3d,3m
5
c
Yields of isolated pure compounds 4a.