method is the chiral Lewis or Brønsted acid catalyzed
asymmetric aziridinations of imines and diazoacetyl com-
pounds, which were reported by Wulff et al.,3,8 Maruoka et
al.,9 and Akiyama et al.10 trans- or cis-aziridines can be
obtained by these methodologies in high diastereo- and
enantioselectivities, but the yields and chemoselectivities of
the aziridination reactions of N-Boc-imines and diazoacetyl
compounds still need to be improved. In this context, we
report an (R)-BINOL-derived chiral phosphoric acid cata-
lyzed reaction of N-Boc-imines and diazoacetamides, provid-
ing a highly efficient organocatalytic method for the asym-
metric aziridination in excellent yields and remarkably high
chemo-, enantio-, and trans-selectivities.
Table 1. Aziridination Reaction of Benzaldehyde N-Boc-imine
and N-PMP-diazoactamide Catalyzed by Different Chiral
Phosphoric Acids in Toluenea
Recently, chiral Brønsted acid catalysis has become a
rapidly growing area.11 Chiral BINOL-derived chiral phos-
phoric acids, pioneered by Akiyama et al. and Terada et al.,
have received considerable attention and been applied in a
wide range of asymmetric organic transformations.12,13 In
particular, Terada and co-workers demonstrated that chiral
phosphoric acid is a highly efficient catalyst for the reaction
of N-acylimines and tert-butyl diazoacetate to furnish the
Friedel-Crafts-type adduct with excellent enantioselectiv-
ity.14 We hypothecized that chiral phosphoric acids should
be efficient catalysts for the reaction of N-Boc-imines and
-diazoacetamides with the possibility of improvement in the
yield and chemoselectivity of the aziridination reaction.
To validate this, we started to investigate the reaction of
N-Boc-imines and -diazoacetamides catalyzed by chiral
phosphoric acid catalysts as the model reaction using N-(4-
methoxyphenyl)diazoacetamide and benzaldehyde-derived
N-Boc-imine. In the presence of 5 mol % of catalysts (R)-
5a-g in toluene, a fast, clean, and complete reaction occurred
at room temperature within 10 min, furnishing the aziridi-
nation product 3a in good selectivities, as shown in Table
1. From this survey, we observed that the sterically more
entry
catalyst
time (min)
yieldb (%)
3:4c
eed (%)
1
2
3
4
5
6
7
(R)-5a
(R)-5b
(R)-5c
(S)-5d
(R)-5e
(R)-5f
(R)-5g
10
10
10
10
10
10
10
80
71
81
85
89
90
90
80:20
69:31
82:18
85:15
89:11
88:12
90:10
45
30
56
-65
70
78
80
a Reactions were performed with benzaldehyde N-Boc-imine (0.12
mmol) and N-(4-methoxyphenyl)diazoacetamide (0.05 mmol) in the presence
of 5 mol % of (R)-5 (0.005 mmol) in 1.0 mL of toluene at 23 °C (room
temperature). b Isolated yield. c Determined by 1H NMR analysis of the
crude product. d Determined by chiral HPLC analysis.
hindered phosphoric acids emerged as catalysts with better
yields (81-90%) and diastereo- (trans:cis > 50:1) and
enantioselectivitives (from 56-80%) (Table 1, entries 3 and
5-7). The best result was obtained with (R)-5g as catalyst,
which afforded the trans-selective aziridination product in
excellent yield (90%) diastereoselectivity (trans:cis > 50:1)
and slightly better enantioselectivity (80% ee). However, the
chemoselectivity between 3 and 4 is still unsatisfied (3:4 less
than 90:10).
(5) For a review of methods in aziridination, see: (a) Evans, D. A.; Faul,
M. M.; Bilodeau, M. T. J. Am. Chem. Soc. 1994, 116, 2742. (b) Watson,
I. D. G.; Yu, L.; Yudin, A. K. Acc. Chem. Res. 2006, 39, 194.
(6) (a) Jacobsen, E. N. In ComprehensiVe Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999;
Vol. 2, p 607. (b) Muller, P.; Fruit, C. Chem. ReV. 2003, 103, 2905.
(7) (a) Shen, Y.-M.; Zhao, M.-X.; Xu, J.; Shi, Y. Angew. Chem., Int.
Ed. 2006, 45, 8005. (b) Vesely, J.; Ibrahem, I.; Zhao, G.-L.; Rios, R.;
Cordova, A. Angew. Chem., Int. Ed. 2007, 46, 778. (c) Wipf, P.; Lyon,
M. A. ARKIVOC 2007, 12, 91. (d) Fabio Pesciaioli, F. V.; Patrizia, G.;
Giorgio, B.; Giuseppe, B.; Andrea, M.; Paolo, M. Angew. Chem., Int. Ed.
2008, 47, 8703.
(13) For selected examples of the phosphoric acid catalyzed reactions,
see: Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed.
2004, 43, 1566. (b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004,
126, 5356. (c) Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem., Int.
Ed. 2005, 44, 7424. (d) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan,
D.W. C. J. Am. Chem. Soc. 2006, 128, 84. (e) Terada, M.; Sorimachi, K.;
Uraguchi, D. Synlett 2006, 133. (f) Terada, M.; Machioka, K.; Sorimachi,
K. Angew. Chem., Int. Ed. 2006, 45, 2254. (g) Mayer, S.; List, B. Angew.
Chem., Int. Ed. 2006, 45, 4193. (h) Itoh, J.; Fuchibe, K.; Akiyama, T. Angew.
Chem., Int. Ed. 2006, 45, 4796. (i) Hoffmann, S.; Nicoletti, M.; List, B.
J. Am. Chem. Soc. 2006, 128, 13074. (j) Martin, N. J. A.; List, B. J. Am.
Chem. Soc. 2006, 128, 13368. (k) Akiyama, T.; Morita, H.; Fuchibe, K.
J. Am. Chem. Soc. 2006, 128, 13070. (l) Liu, H.; Cun, L.-F.; Mi, A.-Q.;
Jiang, Y. Z.; Gong, L. Z. Org. Lett. 2006, 8, 6023. (m) Terada, M.;
Sorimachi, K. J. Am. Chem. Soc. 2007, 129, 292. (n) Kang, Q.; Zhao, Z.-
A.; You, S.-L. J. Am. Chem. Soc. 2007, 129, 1484. (o) Rowland, G. B.;
Rowland, E. B.; Liang, Y.; Perman, J. A.; Antilla, J. C. Org. Lett. 2007, 9,
2609. (p) Zhou, J.; List, B. J. Am. Chem. Soc. 2007, 129, 7498. (q) Li, G.;
Rowland, G. B.; Rowland, E. B.; Antilla, J. C. Org. Lett. 2007, 9, 4065. (r)
Wanner, M. J.; Haas, R. N. S.; Cuba, K. R.; Maarseveen, J. H.; Hiemstra,
H. Angew. Chem., Int. Ed. 2007, 46, 7485. (s) Jiang, J.; Yu, J.; Sun, X.-X.;
Rao, Q.-Q.; Gong, L.-Z. Angew. Chem., Int. Ed. 2008, 47, 2458. (t) Xu, S.;
Wang, Z.; Zhang, X.; Zhang, X.; Ding, K. Angew. Chem., Int. Ed. 2008,
47, 2840. (u) Sickert, M.; Schneider, C. Angew. Chem., Int. Ed. 2008, 47,
3631. (v) Giera, D. S.; Sickert, M.; Schneider, C. Org. Lett. 2008, 10, 4259.
(w) Baudequin, C.; Zamfir, A.; Tsogoeva, S. B. Chem. Commun. 2008,
4637. (x) Liu, H.; Dagousset, G.; Masson, G.; Retailleau, P.; Zhu, J.-P.
J. Am. Chem. Soc. 2009, 131, 4598. (y) Terada, M.; Tanaka, H.; Sorimachi,
K. J. Am. Chem. Soc. 2009, 131, 3430. (z) Lu, M.; Zhu, D.; Lu, Y.; Zeng,
X.; Tan, B.; Xu, Z.; Zhong, G. J. Am. Chem. Soc. 2009, 131, 4562.
(8) (a) Antilla, J. C.; Wulff, W. D. Angew. Chem., Int. Ed. 2000, 39,
4518. (b) Loncaric, C.; Wulff, W. D. Org. Lett. 2001, 3, 3675. (c)
Patwardhan, A. P.; Pulgam, V. R.; Zhang, Y.; Wulff, W. D. Angew. Chem.,
Int. Ed. 2005, 44, 6169. (d) Lu, Z.; Zhang, Y.; Wulff, W. D. J. Am. Chem.
Soc. 2007, 129, 7185. (e) Zhang, Y.; Desai, A.; Lu, Z.; Hu, G.; Ding, Z.;
Wulff, W. D. Chem.sEur. J. 2008, 14, 3785.
(9) Hashimoto, T.; Uchiyama, N.; Maruoka, K. J. Am. Chem. Soc 2008,
130, 14380.
(10) Akiyama, T.; Suzuki, T.; Mori, K. Org. Lett. 2009, 11, 2445.
(11) For reviews on chiral Brønsted acid catalysis, see: (a) Schreiner,
P. R. Chem. Soc. ReV. 2003, 32, 289. (b) Pihko, P. M. Angew. Chem., Int.
Ed. 2004, 43, 2062. (c) Bolm, C.; Rantanen, T.; Schiffers, I.; Zani, L. Angew.
Chem., Int. Ed. 2005, 44, 1758. (d) Yamamoto, H.; Futatsugi, K. Angew.
Chem., Int. Ed. 2005, 44, 1924. (e) Taylor, M. S.; Jacobsen, E. N. An-
gew. Chem., Int. Ed. 2006, 45, 1520. (f) Akiyama, T.; Itoh, J.; Fuchibe, K.
AdV. Synth. Catal. 2006, 348.
(12) For reviews on chiral phosphoric acid catalysis, see: (a) Connon,
S. J. Angew. Chem., Int. Ed. 2006, 45, 3909. (b) Akiyama, T. Chem. ReV.
2007, 107, 5744. (c) Adair, G.; Mukherjee, S.; List, B. Aldrichim. Acta
2008, 41, 31
.
Org. Lett., Vol. 11, No. 14, 2009
3037