Organo-Bridged Bis[tris(arylchalcogenolato)tin] Compounds
Na(SePh) solution slowly at 0 °C. The mixture was stirred for 24
hours, filtered, washed with ethanol and hexane and dried in vacuo.
The compounds crystallized from DCM/hexane mixture within
one week.
[2] R. C. Mehrotra, V. D. Gupta, D. Sukhani, J. Inorg. Nucl.
Chem. 1967, 29, 1577Ϫ1580.
[3] K. C. Kumara Swamy, R. O. Day, R. R. Holmes, J. Am. Chem.
Soc. 1988, 110, 7543Ϫ7544.
[4] Kalsoom, M. Mazhar, S. Ali, M. F. Mahon, K. C. Molloy, M.
I. Chaudry, Appl. Organomet. Chem. 1997, 11, 47Ϫ55.
[5] D. Dakternieks, K. Jurkschat, H. Wu, E. R. T. Tiekink,
Organometallics 1993, 12, 2788Ϫ2793.
[6] M. Gielen, K. Jurkschat, J. Organomet. Chem. 1984, 273,
303Ϫ312.
[7] D. Dakternieks, K. Jurkschat, D. Schollmeyer, H. Wu,
Organometallics 1994, 13, 4121Ϫ4123.
[8] Dakternieks, K. Jurkschat, D. Schollmeyer, H. Wu, J.
Organomet. Chem. 1995, 492, 145Ϫ250.
1,4-Bis[tris(selenophenolato)stannyl]butane (3): Yield: 60 %, 13C
NMR (100 MHz, CDCl3, 25 °C): δ ϭ 21.00(CH2), 28.10(CH2),
123.30, 126.60, 128.40, 135.80, (Ar), 119Sn NMR (CDCl3): δ ϭ
Ϫ4.92 (s)
1,4-Bis[tris(1-selenonaphthylato)stannyl]butane (4): Yield: 58 %. 13
C
NMR (100 MHz, CDCl3, 25 °C): δ ϭ 22.50 (CH2), 28.80 (CH2),
125.66, 126.30, 126.77, 127.98, 128.55, 128.98, 129.41, 129.83,
134.10, 136.90 (Ar),119Sn NMR (CDCl3): δ ϭϪ6.2 (s)
[9] Y. Azuma, M. Newcomb, Organometallics 1984, 3, 9Ϫ14.
[10] N. Belai, M. T. Pope, Polyhedron 2006, 25, 2015Ϫ2020.
[11] R. Hauser, K. Merzweiler, Z. Anorg. Allg. Chem. 2002, 628,
905Ϫ906.
1,4-Bis[tris(selenophenolato)stannylmethyl]benzene (5): Yield: 73 %.
13C NMR (100 MHz, CDCl3, 25 °C): δ ϭ 30.00 (CH2), 124.18,
28.05, 129.17, 137.09, (Ar), 119Sn NMR (CDCl3): δ ϭ Ϫ21.47 (s)
[12] J. Otera, T. Mizutani, H. Nozaki, Organometallics 1989, 8,
2063Ϫ2065.
[13] J. Otera, N. Dan-oh, H. Nozaki, J. Org. Chem. 1991, 56,
5307Ϫ5311.
[14] M. N. Xanthopoulou, S. K. Hadjikakou, N. Hadjiliadis, M.
Kubicki, S. Skoulika, T. Bakas, M. Baril, I. S. Bulter, Inorg.
Chem. 2007, 46, 1187Ϫ1195.
[15] a) G. Barone, T. G. Hibbert, M. F. Mahon, K. C. Molloy, L.
S. Price, I. P. Parkin, A. M. E. Hardy, M. N. Field, J. Mater.
Chem. 2001, 11, 464Ϫ468; b) G. Barone, T. Chaplin, T. G.
Hibbert, A. T. Kana, M. F. Mahon, K. C. Molloy, I. D. Worse-
ley, I. P. Parkin, L. S. Price, J. Chem. Soc., Dalton Trans.
2002, 1085Ϫ1092.
Synthesis of compounds 6 and 7
To a solution of 2-thionaphthal (1.2668 mmol) in 5 mL of toluene,
Et3N (1.2668 mmol) was added and stirred for ten minutes. A solu-
tion of the respective bis(trichlorostannyl)organyl compound
(0.2113 mmol) in 5 mL of toluene was then added dropwise. The
mixture was stirred for 12 hours, toluene was removed under re-
duced pressure, and 10 mL of methanol were added to the obtained
solid The mixture was filtered and the solid was washed with meth-
anol, hexane and dried in vacuo. The compounds are crystallized
from DCH/Hexane mixture within one week.
1,4-Bis[tris(thionaphthylato)stannyl]butane (6): Yield: 55 %. 13C
NMR (100 MHz, CDCl3, 25 °C): δ ϭ 21.80 (CH2), 28.80 (CH2),
125.56, 126.32, 126.59, 127.26, 127.67, 128.43, 132.27, 132.52,
133.60, 134.36 (Ar), 119Sn NMR (CDCl3): δ ϭ 85.49 (s)
[16] a) H. Berwe, A. Haas, Chem. Ber. 1987, 120, 1175Ϫ1182; b)
B. Menzebach, P. Bleckmann, J. Organomet. Chem. 1975, 91,
291Ϫ294.
[17] X. Wang, T. Sheng, R. Fu, S. Hu, S. Xiang, L. Wang, X. Wu,
Inorg. Chem. 2006, 45, 5236Ϫ5238.
[18] L. Wang, T. Sheng, X. Wang, D. Chen, S. Hu, R. Fu, S. Xiang,
X. Wu, Inorg. Chem. 2008, 47, 4054Ϫ4059.
[19] a) R. G. Parr, W. Yang, Density Functional Theory of Atoms
and Molecules, Oxford University Press, New York 1988; b) T.
Ziegler, Chem. Rev. 1991, 91, 651Ϫ667.
1,4-Bis[tris(thionaphthylato)stannylmethyl]benzene (7): Yield: 67 %.
13C NMR (100 MHz, CDCl3, 25 °C): δ ϭ 31.0 (CH2), 125.54,
126.687, 126.754, 127.20, 127.75, 127.86, 128.17, 128.66, 131.6,
133.6 (Ar), 119Sn NMR (CDCl3): δ ϭ 55.44 (s)
[20] a) B. Zobel, A. Duthie, D. Dakternieks, Organometallics 2001,
20, 2820Ϫ2826; b) B. Jousseaume, H. Riague, T. Toupance,
Organometallics 2002, 21, 4590Ϫ4594.
Methods of the quantumchemical investigations
The DFT calculations [19] were performed using the Ridft program
[27] within the program system Turbmole [28], employing the
BP86-functional [29]. Basis sets were of def2-SV(P) quality
(SV(P) ϭ split valence plus polarization except for H atoms) [30].
For Sn, the basis included an effective core potential (ECP-28) in
all calculations [31]. The calculations were undertaken without
symmetry restriction (C1). Convergence into local minima was ra-
tionalized by analytical calculation of the second derivatives using
the program Aoforce [32].
[21] B. Jousseaume, H. Riague, T. Toupance, H. Allouchi, Or-
ganometallics 2007, 26, 3908Ϫ3917.
[22] S. Oae, T. Takata, Y. H. Kim, Tetrahedron 1980, 37, 37Ϫ44.
[23] H. J. Reich, J. M. Renga, I. L. Reich, J. Am. Chem. Soc. 1975,
97, 5434Ϫ5447.
[24] G. Mugesh, A. Panda, H. B. Singh, N. S. Punekar, R. J.
Butcher, J. Am. Chem. Soc. 2001, 123, 839Ϫ850.
[25] Details on the measurement and X-ray structural refinement
of 1-7: All single crystal measurements have been performed
at a Stoe IPDS-II diffractometer at 100 K (1-3, 5-7) or at an
Stoe IPDS diffractometer at 193 K (4), using MoKα radiation
Acknowledgements. This work was financially supported by the
Deutsche Forschungsgemeinschaft (DFG).
˚
(λMoKα ϭ 0.71073 A) and a graphite monochromator. The
structure solution was performed by direct methods, followed
by full-matrix-least-squares refinement against F2, using
Shelxs-97 and Shelxl-97 software [26]. Table 1 summarizes
the data of the X-ray diffractometry. CCDC 692583Ϫ692589
contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The
References
[1] R. Kumar, H. E. Mabrouk, D. G. Tuck, J. Chem. Soc. Dalton
Trans. 1988, 1445-1446.
Z. Anorg. Allg. Chem. 2008, 2805Ϫ2810
© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2809