Table 3 EPR data for a frozen THF solution of a 1 : 1 mixture of L and
Cu(BF4)2·xH2O, and a powdered sample of the title compound
of Energy under Contract No. DE-AC02–05CH11231. AA ac-
knowledges the award of a Monash Graduate Scholarship and a
Monash International Postgraduate Research Scholarship.
Frozen solution at 77 K
g valuesa
A valuesa/mT
b
[CuL](BF4)2
gx = 2.044
gy = 2.082
gz = 1.255
gx = 2.043
gy = 2.165
gz = 1.908
Ax = 6.1
Ay = 7.9
Az = 10.1
Ax = 0.05
Ay = 2.6
Az = 16.0
Notes and references
c
‡ Crystal structure determination: All non-hydrogen atoms were refined
anisotropically. Geometrical and displacement parameter restraints were
[CuLF]BF4
-
used to model the BF4 group. Displacement parameter restraints were
used in modelling one end of one of the ligand arms, even so the ratio
of the displacement parameters max–min is around 5 : 1. Splitting the
end of the arm was considered, but as it reflected only the movement in
the arm and no new chemical information would be gained, it was left
as it was. Hydrogen atoms were placed geometrically where possible and
refined with a riding model. In the case of the N–H’s, these were found in
the difference map and these were allowed to refine with a restrained on
the N–H distance.
Solid
rt
77 K
[CuLF]BF4
gx = 2.01
gy = 2.18
gz = 2.22
gx = 2.02
gy = 2.17
gz = 2.22
a Values from simulated spectra.36 b Solution prepared by mixing equimolar
amounts of L and Cu(BF4)2·xH2O. c Previous solution after adding 1 equiv.
of tetraethylammonium fluoride.
1 A. G. Blackman, Polyhedron, 2005, 24, 1.
2 R. W. Hay and N. Govan, Transition Met. Chem., 1998, 23, 721.
3 M. Pawelec, G. Stochel and R. van Eldik, Dalton Trans., 2004, 292.
4 X. D. Xu, A. R. Lajmi and J. W. Canary, Chem. Commun., 1998,
2701.
5 N. Candelon, D. Lastecoueres, A. K. Diallo, J. R. Aranzaes, D. Astruc
and J. M. Vincent, Chem. Commun., 2008, 741.
6 J. L. Coyle, A. Fuller, V. McKee and J. Nelson, Acta Crystallogr., Sect.
C: Cryst. Struct. Commun., 2006, 62, m472.
7 M. Schatz, M. Becker, O. Walter, G. Liehr and S. Schindler, Inorg.
Chim. Acta, 2001, 324, 173.
8 A. J. Fischmann, C. M. Forsyth and L. Spiccia, Inorg. Chem., 2008, 47,
10565.
9 R. J. Parker, K. D. Lu, S. R. Batten, B. Moubaraki, K. S. Murray,
L. Spiccia, J. D. Cashion, A. D. Rae and A. C. Willis, J. Chem. Soc.,
Dalton Trans., 2002, 3723.
10 R. J. Parker, L. Spiccia, S. R. Batten, J. D. Cashion and G. D. Fallon,
Inorg. Chem., 2001, 40, 4696.
11 J. Chen and L. K. Woo, J. Organomet. Chem., 2000, 601, 57.
12 C. Morton, K. M. Gillespie, C. J. Sanders and P. Scott, J. Organomet.
Chem., 2000, 606, 141.
13 D. V. Yandulov and R. R. Schrock, Science, 2003, 301, 76.
14 V. Ritleng, D. V. Yandulov, W. W. Weare, R. R. Schrock, A. S. Hock
and W. M. Davis, J. Am. Chem. Soc., 2004, 126, 6150.
15 A. Almesa˚ker, L. Scott Janet, L. Spiccia and C. R. Strauss, Tetrahedron
Lett., 2009, 50, 1847.
16 M. Schatz, V. Raab, S. P. Foxon, G. Brehm, S. Schneider, M. Reiher, M.
C. Holthausen, J. Sundermeyer and S. Schindler, Angew. Chem., Int.
Ed., 2004, 43, 4360.
17 D. A. Handley, P. B. Hitchcock, T. H. Lee and G. J. Leigh, Inorg. Chim.
Acta, 2001, 316, 59.
18 R. R. Jacobson, Z. Tyeklar, K. D. Karlin and J. Zubieta, Inorg. Chem.,
1991, 30, 2035.
19 J. Reedijk, J. C. Jansen, H. Van Koningsveld and C. G. Van Kralingen,
Inorg. Chem., 1978, 17, 1990.
20 A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn and G. C. Verschoor,
J. Chem. Soc., Dalton Trans., 1984, 1349.
21 A. J. Fischmann, A. C. Warden, J. Black and L. Spiccia, Inorg. Chem.,
2004, 43, 6568.
22 K. Komiyama, H. Furutachi, S. Nagatomo, A. Hashimoto, H. Hayashi,
S. Fujinami, M. Suzuki and T. Kitagawa, Bull. Chem. Soc. Jpn., 2004,
77, 59.
23 F. Thaler, C. D. Hubbard, F. W. Heinemann, R. van Eldik, S. Schindler,
I. Fabian, A. M. Dittler-Klingemann, F. E. Hahn and C. Orvig, Inorg.
Chem., 1998, 37, 4022.
24 P. Comba, C. Lopez, de Laorden and H. Pritzkov, Helv. Chim. Acta,
2005, 88, 647.
Fig. 4 EPR spectra of a frozen THF solution of (a) [CuL](BF4)2 before
addition of fluoride and (b) [CuLF]BF4 after addition of 1 equiv. of
tetraethylammonium fluoride. Simulated spectra are shown in light-grey.36
* indicates a small amount of impurity present due to some unreacted
[CuL](BF4)2.
new absorption peaks were observed at 680 nm (e = 370 M-1cm-1)
and 840 nm (e = 460 M-1cm-1) in keeping with the formation of a
trigonal-bipyramidal complex.32,34
The reflectance vis–NIR spectrum of the powdered compound,
showing two peaks at 694 and 938 nm (inset of Fig. S3),†
is similar to the solution spectrum after the introduction of
fluoride anions. The EPR spectrum of the powdered sample
also shows g values typical for a trigonal-bipyramidal based
2
coordination environment with the unpaired electron in the dz
orbital (Table 3).35 These results indicate that the compound
adopts the same trigonal-bipyramidal geometry both in solution
and in the solid-state.
In summary, a unique trigonal-bipyramidal Cu(II) coordination
compound has been fully characterised, in which the apical
fluoride ion is totally embedded in a pocket, and kept in position
by the shortest known Cu–F bond, and by weak C–H ◊ ◊ ◊ F
interactions.
25 L. F. Jones, C. A. Kilner, M. P. De Miranda, J. Wolowska and M. A.
Halcrow, Angew. Chem., Int. Ed., 2007, 46, 4073.
26 G. A. van Albada, O. Roubeau, I. Mutikainen, U. Turpeinen and J.
Reedijk, New J. Chem., 2003, 27, 1693.
27 J. Borras, G. Alzuet, M. Gonzalez-Alvarez, J. L. Garcia-Gimenez, B.
Macias and M. Liu-Gonzalez, Eur. J. Inorg. Chem., 2007, 822.
28 J. Fielden, D.-L. Long and L. Cronin, Chem. Commun., 2004,
2156.
Acknowledgements
This work was supported by an AKF grant and the Australian
Research Council through the Centre for Green Chemistry. The
Advanced Light Source is supported by the Director, Office of
Science, Office of Basic Energy Sciences, of the U.S. Department
This journal is
The Royal Society of Chemistry 2009
Dalton Trans., 2009, 4077–4080 | 4079
©