LETTER
Synthesis of Highly Functionalized Cyclobutanes
1161
(10) (a) Menicagli, R.; Malanga, C.; Lardicci, L.; Tinucci, L.
Tetrahedron Lett. 1980, 21, 4525. (b) Menicagli, R.;
Malanga, C.; Lardicci, L. J. Org. Chem. 1982, 47, 2288.
(c) Meek, S. J.; Pradaux, F.; Demont, E. H.; Harrity, J. P. A.
Org. Lett. 2006, 8, 5597.
J = 9.7, 5.4 Hz), 4.27 (1 H, d, J = 8.1 Hz), 4.87 (1 H, br dt,
J = 9.3, 4.8 Hz), 4.94 (1 H, d, J = 11.5 Hz), 4.98 (1 H, d,
J = 4.1 Hz), 7.26 (2 H, t, J = 7.5 Hz), 7.36 (1 H, t, J = 7.5
Hz), 7.49 (2 H, t, J = 7.5 Hz), 7.61–7.68 (3 H, m), 7.91 (2 H,
d, J = 7.5 Hz). 13C NMR (150 MHz, CDCl3): d = –5.4, –5.4,
–3.6, –2.6, –0.3, 18.3, 25.9, 45.8, 47.6, 57.4, 65.0, 70.9, 71.5,
91.6, 104.0, 127.8, 128.8, 129.0, 130.1, 134.0, 134.6, 135.8,
140.5. Anal. Calcd for C31H48O5SSi3: C, 60.34; H, 7.84.
Found: C, 60.34; H, 7.98.
(11) For review of contraction of carbohydrate, see: Redlich, H.
Angew. Chem., Int. Ed. Engl. 1994, 33, 1345.
(12) Stork, G.; Cohen, J. F. J. Am. Chem. Soc. 1974, 96, 5270.
(13) (a) Lallemand, J. Y.; Onanga, M. Tetrahedron Lett. 1975,
16, 585. (b) Petschen, I.; Parrilla, A.; Bosch, M. P.; Amela,
C.; Botar, A. A.; Camps, F.; Guerrero, A. Chem. Eur. J.
1999, 5, 3299.
(14) Krohn, K.; Börner, G. J. Org. Chem. 1994, 59, 6063.
(15) Direct generation of a carbanion by proton abstraction from
a-sulfonyl group cannot be achieved due to the fact that an
epoxidic proton would be abstracted to convert the epoxide
into an enolate under these conditions.
(16) (a) Isobe, M.; Kitamura, M.; Goto, T. J. Am. Chem. Soc.
1982, 104, 4997. (b) Kitamura, M.; Isobe, M.; Ichikawa, Y.;
Goto, T. J. Am. Chem. Soc. 1984, 106, 3252. (c) Isobe, M.;
Ichikawa, Y.; Bai, D.-L.; Masaki, H.; Goto, T. Tetrahedron
1987, 43, 4767. (d) Ichikawa, Y.; Tsuboi, K.; Jiang, Y.;
Naganawa, A.; Isobe, M. Tetrahedron Lett. 1995, 36, 7101.
(e) Tsuboi, K.; Ichikawa, Y.; Jiang, Y.; Naganawa, A.;
Isobe, M. Tetrahedron 1997, 53, 5123.
(17) For reviews on the heteroconjugate addition, see: (a) Isobe,
M. Nippon Nogeikagaku Kaishi 1981, 55, 47. (b) Isobe, M.
J. Synth. Org. Chem. Jpn. 1983, 41, 51. (c) Isobe, M. In
Perspective in the Organic Chemistry of Sulfur;
Cyclobutane 10: IR (KBr): nmax = 3493, 2956, 2172, 1428,
1247, 1147, 1023, 967, 848 cm–1. 1H NMR (400 MHz, C6D6,
318 K): d = 0.09 (6 H, s), 0.10 (9 H, s), 0.54 (3 H, s), 0.56 (3
H, s), 1.00 (9 H, s), 2.09 (1 H, d, J = 5.4 Hz), 3.08 (1 H, ddd,
J = 9.4, 7.4, 2.3 Hz), 3.30 (1 H, dd, J = 9.1, 7.2 Hz), 3.37 (1
H, t, J = 9.1 Hz), 3.46 (1 H, dd, J = 10.5, 5.0 Hz), 3.56 (1 H,
dd, J = 10.5, 5.0 Hz), 4.10 (1 H, td, J = 5.0, 2.3 Hz), 4.37 (1
H, td, J = 7.2, 5.5 Hz), 7.06–7.20 (3 H, m), 7.30–7.40 (3 H,
m), 7.71–7.76 (2 H, m), 7.87–7.92 (2 H, m). 13C NMR (100
MHz, C6D6): d = –5.4, –5.4, –1.7, –0.7, –0.1, 18.6, 26.1,
37.2, 48.2, 56.1, 66.5, 68.4, 71.6, 87.7, 103.8, 128.7, 128.8,
129.1, 129.9, 133.3, 133.9, 138.4, 139.6. Anal. Calcd for
C31H48O5SSi3: C, 60.34; H, 7.84. Found: C, 60.34; H, 7.96.
(23) Marshall, J. A.; Trometer, J. D.; Cleary, D. G. Tetrahedron
1989, 45, 391.
(24) Kolb, H. C.; Sharpless, K. B. Tetrahedron 1992, 48, 10515.
(25) For hydrosilylation with a catalytic amount of Co complex,
see: (a) Isobe, M.; Nishizawa, R.; Nishikawa, T.; Yoza, K.
Tetrahedron Lett. 1999, 40, 6972. (b) Liu, T.-Z.;
Kirschbaum, B.; Isobe, M. Synlett 2000, 587. (c) Liu, T.-Z.;
Isobe, M. Tetrahedron 2000, 56, 5391. (d) Baba, T.; Isobe,
M. Synlett 2003, 547. (e) Baba, T.; Huang, G.; Isobe, M.
Tetrahedron 2003, 59, 6851.
Zwanenburg, B.; Klunder, A. J. H., Eds.; Elsevier Science
Publishers B. V.: Amsterdam, 1986, 209–229. (d) Isobe, M.
J. Synth. Org. Chem. Jpn. 1994, 52, 968. (e) Isobe, M.;
Kira, K. J. Synth. Org. Chem. Jpn. 2000, 58, 99.
(26) Isobe, M.; Kitamura, M.; Mio, S.; Goto, T. Tetrahedron Lett.
1982, 23, 221.
(18) Tsuboi, K.; Ichikawa, Y.; Isobe, M. Synlett 1997, 713.
(19) Isobe, M.; Kitamura, M.; Goto, T. Tetrahedron Lett. 1979,
20, 3465.
(20) The cyclobutane ring structure of 9 was confirmed by X-ray
crystallographic analysis (see Supporting Information), and
other structures were confirmed through NMR
(27) Cyclobutane 20: [a]D27 –14.5 (c 1.15, CHCl3). IR (KBr): nmax
= 3525, 3031, 2172, 1305, 1148 cm–1. 1H NMR (400 MHz,
CDCl3): d = –0.02 (9 H, s), 0.40 (3 H, s), 0.41 (3 H, s), 2.61
(1 H, m), 2.91 (1 H, td, J = 9.0, 3.0 Hz), 2.95 (1 H, t, J = 9.0
Hz), 3.38 (2 H, d, J = 6.0 Hz), 3.48 (1 H, t, J = 9.0 Hz), 3.57
(1 H, dd, J = 11.5, 6.5 Hz), 3.64 (1 H, dd, J = 11.5, 6.5 Hz),
3.98 (1 H, td, J = 6.0, 3.0 Hz), 4.38 (1 H, d, J = 11.5 Hz),
4.44 (1 H, d, J = 11.5 Hz), 7.25–7.76 (15 H, m). 13C NMR
(100 MHz, CDCl3): d = –1.4, –1.1, –0.1, 27.1, 39.6, 40.8,
60.5, 64.1, 70.5, 71.9, 73.4, 87.2, 104.0, 127.9, 127.9, 127.9,
128.4, 128.4, 129.1, 129.7, 133.5, 133.6, 137.4, 137.7,
138.3. Anal. Calcd for C33H42O5SSi2: C, 65.32; H, 6.98.
Found: C, 65.32; H, 7.04.
spectroscopy.
(21) General Procudure for the Synthesis of Cyclobutane by
Heteroconjugate Addition
Trimethylsilylacetylene (5 equiv) was dissolved in THF and
cooled to –78 °C under argon atmosphere. To this cold
solution was added a solution of methyllithium–lithium
bromide complex (4 equiv) dropwise with stirring. This
stirring was continued at –78 °C for 30 min, and then a
solution of vinylsulfone-epoxide (1 equiv) in THF was
added to this mixture. After stirring for further 20 min, the
reaction mixture was allowed to warm to –44 °C, and the
temperature was kept at –44 °C for 40 min, then at –23 °C
for 1 h. The reaction mixture was poured into an ice-cooled
sat. aq NH4Cl. The aqueous layer was separated and
extracted with Et2O. The extracts were combined, washed
with H2O and brine, and then dried over Na2SO4. The
solution was concentrated in vacuo, and the residue was
purified by flash column chromatography to give the
corresponding cyclobutane.
(28) Cyclobutane 24: [a]D22 –34.2 (c 0.56, CHCl3). IR (KBr):
n
max = 3358, 3066, 3030, 1287, 1136 cm–1. 1H NMR (400
MHz, CDCl3): d = 0.03 (9 H, s), 0.55–0.66 (2 H, m), 0.72–
0.84 (4 H, m), 0.89 (9 H, t, J = 7.5 Hz), 2.77 (1 H, tdd,
J = 10.5, 7.5, 2.5 Hz), 3.26 (1 H, ddd, J = 10.5, 6.0, 1.0 Hz),
3.69 (1 H, dd, J = 12.5, 2.5 Hz), 3.73 (1 H, dd, J = 10.0, 5.0
Hz), 3.83 (1 H, dd, J = 10.0, 5.0 Hz), 3.86 (1 H, dd, J = 12.5,
7.5 Hz), 4.20 (1 H, dd, J = 10.5, 1.0 Hz), 4.56 (1 H, d,
J = 11.5 Hz), 4.61 (1 H, d, J = 11.5 Hz), 4.98 (1 H, td,
J = 6.0, 3.0 Hz), 7.28–7.39 (5 H, m), 7.48–7.54 (2 H, m),
7.61–7.67 (1 H, m), 7.92–7.96 (2 H, m). 13C NMR (100
MHz, CDCl3): d = –0.4, 3.7, 8.2, 32.5, 43.2, 46.6, 60.7, 63.1,
67.6, 72.5, 73.2, 90.2, 104.8, 127.8, 127.9, 128.4, 128.9,
129.1, 133.8, 137.8, 140.9. Anal. Calcd for C31H46O5SSi2: C,
63.44; H, 7.90. Found: C, 63.44; H, 7.97.
(22) Cyclobutane 9: IR (KBr): nmax = 3448, 2957, 2858, 1448,
1284, 1252, 1134, 1117, 842 cm–1. 1H NMR (600 MHz,
CDCl3): d = –0.14 (3 H, s), 0.08 (6 H, s), 0.17 (9 H, s), 0.47
(3 H, s), 0.94 (9 H, s), 3.41 (1 H, br d, J = 8.6 Hz), 3.51 (1 H,
dt, J = 11.5, 8.4 Hz), 3.63 (1 H, t, J = 9.5 Hz), 3.79 (1 H, dd,
Synlett 2009, No. 7, 1157–1161 © Thieme Stuttgart · New York