Journal of the American Chemical Society
Article
(17) Mankad, N. P.; Laitar, D. S.; Sadighi, J. P. Organometallics 2004,
23, 3369.
(18) Semba, K.; Fujihara, T.; Xu, T.; Terao, J.; Tsuji, Y. Adv. Synth.
Catal. 2012, 354, 1542.
(19) Whittaker, A. M.; Lalic, G. Org. Lett. 2013, 15, 1112.
(20) Tan, E. H. P.; Lloyd-Jones, G. C.; Harvey, J. N.; Lennox, A. J. J.;
Mills, B. M. Angew. Chem., Int. Ed. 2011, 50, 9602.
(21) (a) Hundertmark, T.; Littke, A. F.; Buchwald, S. L.; Fu, G. C.
Org. Lett. 2000, 2, 1729. (b) Mohamed, R. K.; Mondal, S.; Gold, B.;
Evoniuk, C. J.; Banerjee, T.; Hanson, K.; Alabugin, I. V. J. Am. Chem.
Soc. 2015, 137, 6335.
(22) Bhattacharjya, A.; Klumphu, P.; Lipshutz, B. H. Org. Lett. 2015,
17, 1122.
(23) Laren, M. W. v.; Elsevier, C. J. Angew. Chem., Int. Ed. 1999, 38,
3715.
(24) Yu, J.; Gaunt, M. J.; Spencer, J. B. J. Org. Chem. 2002, 67, 4627.
(25) Kim, I. S.; Dong, G. R.; Jung, Y. H. J. Org. Chem. 2007, 72,
5424.
(26) (a) Motoda, D.; Shinokubo, H.; Oshima, K. Synlett 2002, 2002,
1529. (b) Uozumi, Y.; Kitayama, K.; Hayashi, T. Tetrahedron:
Asymmetry 1993, 4, 2419.
(27) (a) Planellas, M.; Guo, W.; Alonso, F.; Yus, M.; Shafir, A.;
Pleixats, R.; Parella, T. Adv. Synth. Catal. 2014, 356, 179. (b) Bal
Reddy, C.; Shil, A. K.; Guha, N. R.; Sharma, D.; Das, P. Catal. Lett.
2014, 144, 1530. (c) Zhang, J.-w.; Lu, G.-p.; Cai, C. Green Chem.
2017, 19, 2535.
(28) (a) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008,
47, 6338. (b) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41,
1461.
(29) Ligand L1 has not been previously used in catalysis but has
been prepared as an intermediate in the synthesis of a ligand
immobilized on polystyrene beads. See: Parrish, C. A.; Buchwald, S. L.
J. Org. Chem. 2001, 66, 3820.
(30) We suspect that under standard reaction conditions the silane is
responsible for the formation of the active palladium catalyst by
facilitating the reduction of Pd(OAc)2 to palladium(0). The same
silane effect was not observed with Pd2(dba)3 as the palladium source,
although with this catalyst the reaction was significantly slower than
under our standard conditions (29% yield of Sonogashira product
details.
(31) Gelman, D.; Buchwald Stephen, L. Angew. Chem., Int. Ed. 2003,
42, 5993.
(32) Nagaoka, T.; Banskota, A. H.; Tezuka, Y.; Saiki, I.; Kadota, S.
Bioorg. Med. Chem. 2002, 10, 3351.
(33) Tron, G. C.; Pirali, T.; Sorba, G.; Pagliai, F.; Busacca, S.;
Genazzani, A. A. J. Med. Chem. 2006, 49, 3033.
(34) (a) Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A.
K.; Lin, C. M.; Hamel, E. J. Med. Chem. 1991, 34, 2579. (b) Cushman,
M.; Nagarathnam, D.; Gopal, D.; He, H. M.; Lin, C. M.; Hamel, E. J.
Med. Chem. 1992, 35, 2293.
REFERENCES
■
(1) (a) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.
(b) Meijere, A.; Brase, S.; Oestreich, M. Metal-Catalyzed Cross-
Coupling Reactions and More; Wiley-VCH Verlag GmbH & Co.
KGaA: New York, 2014.
̈
(2) (a) Radkowski, K.; Sundararaju, B.; Furstner, A. Angew. Chem.,
̈
Int. Ed. 2013, 52, 355. (b) Karunananda, M. K.; Mankad, N. P. J. Am.
Chem. Soc. 2015, 137, 14598. (c) Oger, C.; Balas, L.; Durand, T.;
Galano, J.-M. Chem. Rev. 2013, 113, 1313. (d) Fu, S.; Chen, N.-Y.;
Liu, X.; Shao, Z.; Luo, S.-P.; Liu, Q. J. Am. Chem. Soc. 2016, 138,
8588. (e) Richmond, E.; Moran, J. J. Org. Chem. 2015, 80, 6922.
(3) (a) Crowe, W. E.; Goldberg, D. R. J. Am. Chem. Soc. 1995, 117,
5162. (b) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H.
J. Am. Chem. Soc. 2003, 125, 11360. (c) Cossy, J.; BouzBouz, S.;
Hoveyda, A. H. J. Organomet. Chem. 2001, 634, 216.
(4) (a) Meek, S. J.; O’Brien, R. V.; Llaveria, J.; Schrock, R. R.;
Hoveyda, A. H. Nature 2011, 471, 461. (b) Herbert, M. B.; Grubbs,
R. H. Angew. Chem., Int. Ed. 2015, 54, 5018. (c) Koh, M. J.; Nguyen,
T. T.; Lam, J. K.; Torker, S.; Hyvl, J.; Schrock, R. R.; Hoveyda, A. H.
Nature 2017, 542, 80. (d) Xu, C.; Shen, X.; Hoveyda, A. H. J. Am.
Chem. Soc. 2017, 139, 10919.
(5) Diastereodivergence has been reported in hydroarylation of two
symmetrical diarylalkynes using chromones as coupling partners. See:
Min, M.; Kim, D.; Hong, S. Chem. Commun. 2014, 50, 8028.
(6) Nakamura, K.; Nishikata, T. ACS Catal. 2017, 7, 1049.
(7) (a) Schipper, D. J.; Hutchinson, M.; Fagnou, K. J. Am. Chem. Soc.
2010, 132, 6910. (b) Kim, N.; Kim, K. S.; Gupta, A. K.; Oh, C. H.
Chem. Commun. 2004, 618. (c) Lautens, M.; Yoshida, M. Org. Lett.
2002, 4, 123. (d) Liu, Z.; Derosa, J.; Engle, K. M. J. Am. Chem. Soc.
2016, 138, 13076. (e) Shirakawa, E.; Takahashi, G.; Tsuchimoto, T.;
Kawakami, Y. Chem. Commun. 2001, 2688.
(8) (a) Nakao, Y.; Kanyiva, K. S.; Oda, S.; Hiyama, T. J. Am. Chem.
Soc. 2006, 128, 8146. (b) Nakao, Y.; Kanyiva, K. S.; Hiyama, T. J. Am.
Chem. Soc. 2008, 130, 2448. (c) Kortman, G. D.; Hull, K. L. ACS
Catal. 2017, 7, 6220.
(9) (a) Jia, C.; Lu, W.; Oyamada, J.; Kitamura, T.; Matsuda, K.; Irie,
M.; Fujiwara, Y. J. Am. Chem. Soc. 2000, 122, 7252. (b) Jia, C.; Piao,
D.; Oyamada, J.; Lu, W.; Kitamura, T.; Fujiwara, Y. Science 2000, 287,
1992.
(10) Currently, the best practical approach to Z-selective hydro-
arylation of alkynes relies on the stoichiometric preparation of a Z-
alkenyl metal intermediate and its use in palladium-catalyzed cross
coupling with aryl halides. See: Takami, K.; Yorimitsu, H.; Oshima, K.
Org. Lett. 2002, 4, 2993.
(11) (a) Reetz, M. T.; Sommer, K. Eur. J. Org. Chem. 2003, 2003,
3485. (b) Tsuchimoto, T.; Maeda, T.; Shirakawa, E.; Kawakami, Y.
Chem. Commun. 2000, 1573. (c) Oyamada, J.; Kitamura, T.
Tetrahedron 2007, 63, 12754.
(12) Tunge, J. A.; Foresee, L. N. Organometallics 2005, 24, 6440.
(13) For a complementary approach based on hydroalkylation of
aryl alkynes, see: (a) Cheung, C. W.; Zhurkin, F. E.; Hu, X. J. Am.
Chem. Soc. 2015, 137, 4932. (b) Kambe, N.; Moriwaki, Y.; Fujii, Y.;
Iwasaki, T.; Terao, J. Org. Lett. 2011, 13, 4656.
(14) (a) Lohr, T. L.; Marks, T. Nat. Chem. 2015, 7, 477. (b) Wasilke,
J.-C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Chem. Rev. 2005, 105,
1001.
(35) Gapinski, D. M.; Mallett, B. E.; Froelich, L. L.; Jackson, W. T. J.
Med. Chem. 1990, 33, 2807.
(37) Vergote, T.; Nahra, F.; Merschaert, A.; Riant, O.; Peeters, D.;
Leyssens, T. Organometallics 2014, 33, 1953.
(38) Mazzacano, T. J.; Mankad, N. P. ACS Catal. 2017, 7, 146.
(39) Hayashi, T.; Hirate, S.; Kitayama, K.; Tsuji, H.; Torii, A.;
Uozumi, Y. J. Org. Chem. 2001, 66, 1441.
(40) Lipshutz, B. H.; Servesko, J. M.; Taft, B. R. J. Am. Chem. Soc.
2004, 126, 8352.
(15) (a) Li, L.; Herzon, S. B. Nat. Chem. 2014, 6, 22. (b) Trost, B.
M.; Machacek, M. R.; Faulk, B. D. J. Am. Chem. Soc. 2006, 128, 6745.
(c) Goldman, A. S.; Roy, A. H.; Huang, Z.; Ahuja, R.; Schinski, W.;
Brookhart, M. Science 2006, 312, 257. (d) Persson, B. A.; Larsson, A.
̈
L. E.; Le Ray, M.; Backvall, J.-E. J. Am. Chem. Soc. 1999, 121, 1645.
(e) Yuki, Y.; Takahashi, K.; Tanaka, Y.; Nozaki, K. J. Am. Chem. Soc.
2013, 135, 17393. (f) Li, Z.; Assary, R. S.; Atesin, A. C.; Curtiss, L. A.;
Marks, T. J. J. Am. Chem. Soc. 2014, 136, 104. (g) Tjutrins, J.;
Arndtsen, B. A. Chem. Sci. 2017, 8, 1002.
(16) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett.
́
1975, 16, 4467. (b) Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107,
874.
I
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX