the fluorescence images. We thank Dr Sankar Bhuniya for
preparation of compound 3 and Mr Haisung Lee for preparing
the samples for TEM measurements.
Notes and references
1 R. G. Stevens, D. Y. Jones, M. S. Micozzi and P. R. Taylor,
New Engl. J. Med., 1988, 319, 1047.
2 C. P. Siegers, D. Bumann, H. D. Trepkau, B. Schadwinkel B and
G. Baretton, Cancer Lett., 1992, 62, 245.
3 X. Huang, Mut. Res., 2003, 533, 153.
4 J. L. Buss, F. M. Torti and S. V. Torti, Curr. Med. Chem., 2003, 10,
1021.
5 D. S. Kalinowski and D. R. Richardson, Pharmacol. Rev., 2005,
57, 547.
6 H.-S. Chong, F. M. Torti, S. V. Torti and M. W. Brechbiel,
J. Med. Chem., 2004, 47, 5230.
7 N. Birch, X. Wang and X. H.-S. Chong, Expert Opinion. Ther.
Pat., 2006, 16, 1533.
8 W. P. Faulk, B. L. HsiI and P. J. Stevens, Lancet, 1980, 2, 390.
9 H. N. Keer, J. M. Kozlowski, Y. C. Tsai, C. Lee, R. N. McEwan
and J. T. Grayhack, J. Urol., 1990, 143, 381.
10 M. Kucharzewski, J. Braziewicz, U. Majewska and S. Gozdz, Biol.
Trace Elem. Res., 2003, 95, 19.
Scheme 2 Synthesis of fluorescent NBD–CA–NE3TA.
11 M. J. Brookes, S. Hughes, F. E. Turner, G. Reynolds, N. Sharma,
T. Ismail, G. Berx, A. T. McKie, N. Hotchin, G. J. Anderson,
T. Iqbal and C. Tselepis, Gut, 2006, 55, 1449.
12 G. Krishna, J. Mao, B. Almassian and W. Lang, Pharm. Dev.
Technol., 1999, 4, 71.
13 A. B. Alvero, W. Chen, A. C. Sartorelli, P. Schwartz,
T. Rutherford and G. Mor, J. Soc. Gynecol. Invest., 2006, 13, 145.
14 H. M. Lederman, A. Cohen, J. W. Lee, M. H. Freedman and
E. W. Gelfand, Blood, 1984, 64, 748.
Fig. 3 Fluorescence images of HT29 cancer cells; (a,b) control cancer
cells; (c,d) the cells incubated with NBD–CA–NE3TA (50 mM, H2O)
for 10 min at 37 1C; phase contrast images (b,d).
15 J. Blatt and S. Stitely, Cancer Res., 1987, 47, 1749.
16 Z. Estrov, A. Tawa, X. H. Wang, I. D. Dube, H. Sulh, A. Cohen,
E. W. Gelfand and M. H. Freedman, Blood, 1987, 69, 757.
17 L. Dezza, M. Cazzola and M. Danova, Leukemia, 1989, 3, 104.
18 K. R. Bridges and A. J. Cudkowicz, J. Biol. Chem., 1984, 259, 12970.
19 L. Shen, H. Y. Zhao, J. Du and F. Wang, In vivo, 2005, 19, 233.
20 L. Brard, C. O. Granai and N. Swamy, Gynecol. Oncol., 2006, 100, 116.
21 M. J. Pippard, M. J. Jackson, K. Hoffman, M. Petrou and
C. B. Modell, Scand. J. Haematol., 1986, 36, 466.
22 H.- S. Chong, X. Ma, H. S. Lee, P. Bui, H. A. Song and N. Birch,
J. Med. Chem., 2008, 51, 2208.
23 A. Rich and D. M. Blow, Nature, 1958, 182, 423–6.
24 P. B. Savage, Eur. J. Org. Chem., 2002, 10, 759.
25 N. F. Ho, Ann. N. Y. Acad. Sci., 1987, 507, 314.
26 M. R. Ballestero, M. J. Monte, O. Briz, F. Jimenez, F. G.
S. Martin and J. J. G. Marin, Biochem. Pharmacol., 2006, 72, 729.
27 E. C. Torchia and L. B. Agellon, Eur. J. Cell Biol., 1997, 74, 190–6.
28 J. Summerton, M. Flynn, T. Cooke and I. Taylor, Br. J. Surg.,
1983, 70, 549.
29 W. A. Faubion, M. E. Guicciardi, H. Miyoshi, S. F. Bronk,
P. J. Roberts, P. A. Svingen, S. H. Kaufmann and G. J. Gores,
J. Clin. Invest., 1999, 103, 137.
30 A. A. Powell, J. M. LaRue, A. K. Batta and J. D. Martinez,
Biochem. J., 2001, 356, 481.
31 H.- S. Chong, H. A. Song, S. Y. Lim, K. Macrenaris, X. Ma, H. S. Lee,
P. Bui and T. Meade, Bioorg. Med. Chem. Lett., 2008, 18, 2505.
32 H.- S. Chong, H. A. Song, X. Ma, D. E. Milenic, E. D. Brady,
S. Y. Lim, H. Lee, K. Baidoo, D. Cheng and M. W. Brechbiel,
Bioconjugate Chem., 2008, 19, 1439.
In summary, the bile acid–NE3TA conjugates (CA–NE3TA,
CDCA–NE3TA, and DCA–NE3TA) were synthesized and
evaluated for their anti-proliferative activities in the HeLa
and HT29 cancer cell lines. All bile acid–NE3TA conjugates
studied herein were much stronger inhibitors than the clini-
cally available iron chelators DFO and DTPA. DCA–NE3TA
was identified as the most potent antitumor agent, and
exhibited cytotoxic activity against the cancer cells comparable
to the non-functionalized parent chelator NE3TA. The cyto-
toxicity data indicate that conjugation of NE3TA to DCA was
achieved without compromising the antitumor potency of
NE3TA. TEM images showed that the bile acid-based
conjugates, CDCA–NE3TA and CA–NETA self assemble
forming nano-sized micelles. CA–NE3TA was conjugated to
the fluorescent moiety (NBD), and fluorescent accumulation
of NBD–CA–NE3TA was detected in the HT29 colon cancer
cells. The results of cytotoxicity and fluorescence assays along
with TEM images suggest the bile acid–NE3TA conjugates as
potential nanomedicines for targeted anticancer therapy. In an
effort to identify further optimized iron-depleting conjugates,
structure–activity relationship (SAR) studies of bile acids
conjugated to the potential iron chelators in the NE3TA series
along with mechanistic studies to understand their biological
activities are ongoing and will be reported in due course.
The authors thank Dr Nick Menhart for the fluorescence
spectroscopy and Dr Vytas Bindokas for assistance in obtaining
33 A. H. Cory, T. C. Owen, J. A. Barltrop and J. G. Cory, Cancer
Commun., 1991, 3, 207.
34 M. Woods, Z. Kovacs, R. Kiraly, E. Brucher, S. Zhang and
A. D. Sherry, Inorg. Chem., 2004, 43, 2845.
35 Y. Zhao and Z. Zhong, J. Am. Chem. Soc., 2005, 127, 17894.
36 A. P. Davis, S. Dresen and L. J. Lawless, Tetrahedron Lett., 1997,
38, 4305.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 3011–3013 | 3013