Journal of the American Chemical Society
Page 6 of 8
(c) Kong, W.-J.; Finger, L. H.; Oliveira, J. C. A.; Ackermann, L.
Sen, M.; Mandal, R.; Das, A.; Kalsi, D.; Sundararaju, B. Cp*CoIII–
Catalyzed Bis-isoquinolone Synthesis by C–H Annulation of Aryla-
mide with 1,3-Diyne. Chem. Eur. J. 2017, 23, 17454–17457. (c) Grigor-
jeva, L.; Daugulis, O. Cobalt-Catalyzed, Aminoquinoline-Direted
C(sp2)–H Bond Alkenylation by Alkynes. Angew. Chem. Int. Ed. 2014,
53, 10209–10212.
1
2
3
4
5
6
7
8
Rhodaelectrocatalysis for Annulative C–H Activation: Polycyclic
Aromatic Hydrocarbons by Versatile Double Electrocatalysis. Angew.
Chem. Int. Ed. 2019, 58, 6342–6346.
(16) Qiu, Y.; Stangier, M.; Meyer, T. H.; Oliveira, J. C. A.; Ackermann,
L. Iridium-Catalyzed Electrooxidative C−H Activation by Chemose-
lective Redox-Catalyst Cooperation. Angew. Chem. Int. Ed. 2018, 57,
14179–14183.
(24) For selected reviews, see: (a) Duarah, G.; Kaishap, P. P.; Begum,
T.; Gogoi, S. Recent Advances in Ruthenium(II)-Catalyzed C–H Bond
Activation and Alkyne Annulation Reactions. Adv. Synth. Catal. 2019,
361, 654–672. (b) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Ruthe-
nium(II)-Catalyzed C–H Bond Activation and Functionalization.
Chem. Rev. 2012, 112, 5879–5918. For selected examples, see: (c) Pra-
kash, R.; Shekarrao, K.; Gogoi, S. Ruthenium(II)-Catalyzed Alkene
C−H Bond Functionalization on Cinnamic Acids: A Facile Synthesis
of Versatile α-Pyrones. Org. Lett. 2015, 17, 5264−5267. (d) Chin-
nagolla, R. K.; Jeganmohan, M. Regioselective synthesis of isocouma-
rins by ruthenium-catalyzed aerobic oxidative cyclization of aro-
matic acids with alkynes. Chem. Commun. 2012, 48, 2030–2032. (e)
Ackermann, L.; Pospech, J.; Graczyk, K.; Rauch, K. Versatile Synthe-
sis of Isocoumarins and -Pyrones by Ruthenium-Catalyzed Oxida-
tive C–H/O–H Bond Cleavages. Org. Lett. 2012, 14, 930–933. (f)
Ackermann, L.; Lygin, A. V.; Hofmann, N. Ruthenium-Catalyzed
Oxidative Synthesis of 2-Pyridones through C–H/N–H Bond Func-
tionalizations. Org. Lett. 2011, 13, 3278–3281.
(25) For selected reviews, see: (a) Yang, Y.; Li, K.; Cheng, Y.; Wan, D.;
Li, M.; You, J. Rhodium-catalyzed annulation of arenes with alkynes
through weak chelation-assisted C–H activation. Chem. Commun.
2016, 52, 2872–2884. (b) Song, G.; Wang, F.; Li, X. C–C, C–O and C–N
bond formation via rhodium(III)-catalyzed oxidative C–H activation.
Chem. Soc. Rev. 2012, 41, 3651–3678. (c) Satoh, T.; Miura, M. Oxida-
tive Coupling of Aromatic Substrates with Alkynes and Alkenes un-
der Rhodium Catalysis. Chem. Eur. J. 2010, 16, 11212–11222. For select-
ed examples, see: (d) Kudo, E.; Shibata, Y.; Yamazaki, M.; Masutomi,
K.; Miyauchi, Y.; Fukui, M.; Sugiyama, H.; Uekusa, H.; Satoh, T.;
Miura, M.; Tanaka, K. Oxidative Annulation of Arenecarboxylic and
Acrylic Acids with Alkynes under Ambient Conditions Catalyzed by
an Electron Deficient Rhodium(III) Complex. Chem. Eur. J. 2016, 22,
14190–14194. (e) Li, Q.; Yan, Y.; Wang, X.; Gong, B.; Tang, X.; Shi, J.;
Xu, H. E.; Yi, W. Water as a green solvent for efficient synthesis of
isocoumarins through microwave-accelerated and Rh/Cu-catalyzed
C–H/O–H bond functionalization. RSC Adv. 2013, 3, 23402–23408. (f)
Itoh, M.; Shimizu, M.; Hirano, K.; Satoh, T.; Miura, M. Rhodium-
Catalyzed Decarboxylative and Dehydrogenative Coupling of Maleic
Acids with Alkynes and Alkenes. J. Org. Chem. 2013, 78, 11427−11432.
(g) Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. Synthesis of Func-
tionalization Pyrone and Butenolide Derivatives by Rhodium-
Catalyzed Oxidative Coupling of Substituted Acrylic Acids with Al-
kynes and Alkenes. J. Org. Chem. 2009, 74, 6295–6298.
(17) For selected reviews on metal-catalyzed electrochemical C–H
functionalization, see: (a) Qiu, Y.; Struwe, J.; Ackermann, L. Metal-
laelectro-Catalyzed C–H Activation by Weak Coordination. Synlett
2019, 30, 1164–1173. (b) Meyer, T. H.; Finger, L. H.; Gandeepan, P.;
Ackermann, L. Resource Economy by Metallaelectrocatalysis: Merg-
ing Electrochemistry and C–H Activation. Trends Chem. 2019, 1, 63–
76. (c) Sauermann, N.; Meyer, T. H.; Qiu, Y.; Ackermann, L.
Electrocatalytic C–H Activation. ACS Catal. 2018, 8, 7086–7103. (d)
Sauermann, N.; Meyer, T. H.; Ackermann, L. Electrochemical Cobalt-
Catalyzed C-H Activation. Chem. Eur. J. 2018, 24, 16209–16217. (e) Ma,
C.; Fang, P.; Mei, T.-S. Recent advances in C–H functionalization
using electrochemical transition metal catalysis. ACS Catal. 2018, 8,
7179–7189. (f) Budkina, Y. B.; Gryaznova, T. V.; Sinyashin, O. G.;
Budnikova, Y. H. Russ. Chem. Bull., Int. Ed. 2015, 64, 1713–1725.
(18) For selected examples on metal-catalyzed electrochemical arene
C–H/O–H or C–H/N–H annulation, see: (a) Mei, R.; Ma, W.; Zhang,
Y.; Guo, X.; Ackermann, L. Cobaltaelectro-Catalyzed Oxidative
C−H/N−H Activation with 1,3-diynes by Electro-Removable Hydra-
zides. Org. Lett. 2019, 21, 6534–6538. (b) Meyer, T. H.; Oliveira, J. C.
A.; Sau, S. C.; Ang, N. W. J.; Ackermann, L. Electrooxidative Allene
Annulations by Mild Cobalt-Catalyzed C–H Activation. ACS Catal.
2018, 8, 9140–9147. (c) Mei, R.; Sauermann, N.; Oliveira, J. C. A.;
Ackermann, L. Electroremovable Traceless Hydrazides for Cobalt-
Catalyzed Electro-Oxidative C–H/N–H Activation with Internal Al-
kynes. J. Am. Chem. Soc. 2018, 140, 7913–7921. (d) Tian, C.; Massignan,
L.; Meyer, T. H.; Ackermann, L. Electrochemical C–H/N–H
Activation by water-Tolerant Cobalt-Catalysis at Room Temperature.
Angew. Chem. Int. Ed. 2018, 57, 2383–2387. (e) Tang, S.; Wang, D.; Liu,
Y.; Liu, L.; Lei, A. Cobalt-catalyzed electrooxidative C-H/N-H [4+2]
annulation with ethylene or ethyne. Nature Commun. 2018, 9, 798–
805. (f) Reference 13.
(19) Qiu, Y.; Kong, W.-J.; Struwe, J.; Sauermann, N.; Rogge, T.
Scheremetjew, A.; Ackermann, L. Electrooxidative Rhodium-
Catalyzed C–H/C–H Activation: Electricity as Oxidant for Cross-
Dehydrogenative Alkenylation. Angew. Chem. Int. Ed. 2018, 57, 5828–
5832.
(20) For selected recent reviews on metal-catalyzed vinylic C–H
functionalization, see: (a) Maraswami, M.; Loh, T.-P. Transition-
Metal-Catalyzed Alkenyl sp2 C–H Activation: A Short Account. Syn-
thesis 2019, 51, 1049–1062. (b) Liu, M.; Yang, P.; Karunananda, M. K.;
Wang, Y.; Liu, P.; Engle, K. M. C(alkenyl)–H Activation via Six-
Membered Palladacyles: Catalytic 1,3-Diene Synthesis. J. Am. Chem.
Soc. 2018, 140, 5805–5813. (c) Wang, K.; Hu, F.; Zhang, Y.; Wang, J.
Directing group-assisted transition-metal-catalyzed vinylic C–H
bond functionalization. Sci. China. Chem. 2015, 58, 1252–1265. (d)
Shang, X.; Liu, Z.-Q. Transition Metal-catalyzed Cvinyl–H bond activa-
tion. Chem. Soc. Rev. 2013, 42, 3253–3260.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(26) (a) Sun, Y.; Zhang, G. Palladium-Catalyzed Formal [4+2] Cy-
cloaddition of Benzoic and Acrylic Acids with 1,3-Dienes via C–H
Bond Activation: Efficient Access to 3,4-Dihydroisocoumarin and
5,6-Dihydrocoumalins. Chin. J. Chem. 2018, 36, 708–711. (b) Yu, Y.;
Huang, L.; Wu, W.; Jiang, H. Palladium-Catalyzed Oxidative Annula-
tion of Acrylic Acid and Amide with Alkynes: A Practical Route to
Synthesize -Pyrones and Pyridones. Org. Lett. 2014, 16, 2146–2149.
(27) For selected examples on Ir-catalyzed vinylic C–H functionaliza-
tion, see: (a) Sun, Y.; Meng, K.; Zhang, J.; Jin, M.; Huang, N.; Zhong,
G. Additive- and Ligand-Free Cross-Coupling Reactions between
Alkenes and Alkynes by Iridium Catalysis. Org. Lett. 2019, 21, 4868–
4872. (b) Kim, H.; Park, G.; Park, J.; Chang, S. A Facile Access to
Primary Alkylamines and Anilines via Ir(III)-Catalyzed C–H Ami-
dation by Using Azidoformates. ACS Catal. 2016, 6, 5922–5929. (c)
(21) Blanksby, S. J.; Ellison, G. B. Bond dissociation energies of organ-
ic molecules. Acc. Chem. Res. 2003, 36, 255–263.
(22) (a) Schäberle, T. F. Biosynthesis of -pyrones. Beilstein J. Org.
Chem. 2016, 12, 571–588. (b) Lee, J. S. Recent Advances in the Synthe-
sis of 2-Pyrones. Mar. Drugs 2015, 13, 1581–1620.
(23) (a) Mandal, R.; Sundararaju, B. Cp*Co(III)-Catalyzed Annulation
of Carboxylic Acids with Alkynes. Org. Lett. 2017, 19, 2544–2547. (b)
ACS Paragon Plus Environment