LETTER
Synthesis of Hydroxy-α-sanshool
2565
of 9 with phosphorane 8 afforded enoate 5 in 91% yield synthesis of 1, and envision that easy access to large quan-
with predominate E-stereoselectivity (92:8). This was fol- tities of 2 will allow the preparation of a broad range of
lowed by treatment of 5 with Ph3P to afford the corre- amide analogues of 1 for use in structure–activity relation-
sponding phosphonium salt 10 in 96% yield. Salt 10 was ship studies. Results of this ongoing research program
then mixed with K2CO3 and aldehyde 6 to effect the sec- will be reported shortly.
ond Wittig reaction, which afforded 11 in 80% yield with
approximate 2:1 Z/E-stereoselectivity.11 Ester 11 was then
Acknowledgment
converted into 2 in 43% yield after recrystallization.
This research was supported financially by the University of Hong
Kong and the Research Grants Council of the Hong Kong S. A. R.,
P. R. of China (Project No. HKU 705209P).
Finally, coupling of 2 with 3 (prepared according to the
literature procedure from 43) with HBTU and Et3N afford-
ed 1 in 92% yield. Thus, 1 was synthesized expediently in
21% overall yield in a process that required six reactions
in the longest linear sequence.12 It should be noted that
Supporting Information for this article is available online at
rmnartSnpufIormigiotnat
nantly trans,trans’, and is approximately a 5:1 mixture of
isomers according to 1H NMR analysis. This is one of the
major reasons for the relatively modest yield of 2. Consid-
ering this fact and the amounts of undesired alkene iso-
mers formed in the two Wittig reactions, our achieved
yield of 2 is quite respectable. Fortunately, nearly all of
the undesired stereochemical isomers due to the nature of
6 used as the starting material, and formed in the Wittig
reactions, could be removed by the recrystallization of 2
(ca. 96% isomerically pure).
References and Notes
(1) (a) Yasuda, I.; Takeya, K.; Itokawa, H. Phytochemistry
1982, 21, 1295; and references cited therein. (b) Mitzutani,
K.; Fukunaga, Y.; Tanaka, O.; Takasugi, N.; Saruwatari, Y.-
I.; Fuwa, T.; Yamauchi, T.; Wang, J.; Jia, M.-R.; Li, F.-Y.;
Ling, Y.-K. Chem. Pharm. Bull. 1988, 36, 2362.
(c) Kashiwada, Y.; Ito, C.; Katagiri, H.; Mase, I.; Komatsu,
K.; Namba, T.; Ikeshiro, Y. Phytochemistry 1997, 44, 1125.
(d) Xiong, Q.; Shi, D.; Yamamoto, H.; Mizuno, M.
Phytochemistry 1997, 46, 1123. (e) Chen, I.-H.; Chen, T.-L.;
Lin, W.-Y.; Tsai, I.-L.; Chen, Y.-C. Phytochemistry 1999,
52, 357. (f) Jang, K. H.; Chang, Y. H.; Kim, D.-D.; Oh, K.-
B.; Oh, U.; Shin, J. Arch. Pharm. Res. 2008, 31, 569.
(2) (a) Sugai, E.; Morimitsu, Y.; Iwasaki, Y.; Morita, A.;
Watanabe, T.; Kubota, K. Biosci. Biotechnol. Biochem.
2005, 69, 1951. (b) Koo, J. Y.; Jang, Y.; Cho, H.; Lee, C.-H.;
Jang, K. H.; Chang, Y. H.; Shin, J.; Oh, U. Eur. J. Neurosci.
2007, 26, 1139. (c) Bautista, D. M.; Sigal, Y. M.; Milstein,
A. D.; Garrison, J. L.; Zorn, J. A.; Tsuruda, P. R.; Nicoll, R.
A.; Julius, D. Nature Neurosci. 2008, 11, 772. (d) Riera, C.
E.; Menozzi-Smarrito, C.; Affolter, M.; Michlig, S.; Munari,
C.; Robert, F.; Vogel, H.; Simon, S. A.; le Coutre, J. Br. J.
Pharmacol. 2009, 157, 1398.
O
PCC, CH2Cl2, r.t.
Br
7
H
9
8, CH2Cl2, r.t.
Ph3P, MeCN, reflux
5
O
6, K2CO3, PhMe, 70 °C
Br
Ph3P
OMe
10
O
1. NaOH, H2O, 70 °C
2. 1 M HCl, r.t.
2
(3) Menozzi-Smarrito, C.; Riera, C. E.; Munari, C.; le Coutre, J.;
Robert, F. J. Agric. Food Chem. 2009, 57, 1982.
OMe
(4) According to Bautista et al.,2c 50 g of dried seeds from
Zanthoxylum piperitum afforded 55.2 mg of crude 1 after
preparative HPLC. Repetitive chromatographic separation
was required to further purify 1 to homogeneity
11
3, HBTU, Et3N
1
CH2Cl2, r.t.
(5) (a) Baraldi, P. G.; Preti, D.; Materazzi, S.; Geppetti, P. J.
Med. Chem. 2010, 53, 5085. (b) Mathie, A. J. Pharm.
Pharmacol. 2010, 62, 1089. (c) Es-Salah-Lamoureux, Z.;
Steele, D. F.; Fedida, D. Trends Pharmacol. Sci. 2010, 31,
587.
1. BnNH2, Et3N, H2O, r.t.
2. H2, Pd/C, MeOH, r.t.
4
3
Scheme 2 Synthesis of hydroxy-α-sanshool (1)
(6) (a) Sawyer, C. M.; Carstens, M. I.; Simons, C. T.; Slack, J.;
McCluskey, T. S.; Furrer, S.; Carstens, E. J. Neurophysiol.
2009, 101, 1742. (b) Lennertz, R. C.; Tsunozaki, M.;
Bautista, D. M.; Stucky, C. L. J. Neurosci. 2010, 30, 4353.
(c) Albin, K. C.; Simons, C. T. PLoS One 2010, 5, e9520.
(d) Klein, A. H.; Sawyer, C. M.; Zanotto, K. L.; Ivanov, M.
A.; Cheung, S.; Carstens, M. I.; Furrer, S.; Simons, C. T.;
Slack, J. P.; Carstens, E. J. Neurophysiol. 2011, 105, 1701.
(7) Artaria, C.; Maramaldi, G.; Bonfigli, A.; Rigano, L.;
Appendino, G. Int. J. Cosmetic Sci. 2011, 33, 328.
(8) Starkenmann, C.; Cayeux, I.; Birkbeck, A. A. Chimia 2011,
65, 407.
In conclusion, we report a short, high-yielding synthesis
of 1 from four simple and inexpensive building blocks
that involves two stereoselective Wittig reactions as the
key transformations for construction of the carbon skele-
ton. Importantly, penultimate intermediate 2 can be re-
crystallized to
a
high level of stereochemical
homogeneity, and thus the undesired diastereomers result-
ing from starting material 6 and formed in the Wittig reac-
tions can be readily removed. We are currently
investigating the application of our previously reported
methodology for facilitating Wittig reactions13 to the
(9) For what is, to our knowledge, the only previously reported
synthesis of 2 (and α-sanshool) by a different route, see:
Sonnet, P. E. J. Org. Chem. 1969, 34, 1147.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2012, 23, 2564–2566