3984
M. Kimura et al. / Tetrahedron Letters 50 (2009) 3982–3984
2. (a) Ziegler, K.; Wilms, H. Justus Liebigs Ann. Chem. 1950, 567, 1; (b) Jolly, P. W.;
Jonas, K.; Krüger, C.; Tsay, Y.-H. J. Organomet. Chem. 1971, 33, 109; (c) Benn, R.;
Büssemeier, B.; Holle, S.; Jolly, P. W.; Mynott, R.; Tkatchenko, I.; Wilke, G. J.
Organomet. Chem. 1985, 279, 63; (d) Heimbach, P.; Kluth, J.; Schenkluhn, H.;
Weimann, B. Angew. Chem., Int. Ed. 1980, 19, 569.
3. (a) Baker, R. Chem. Rev. 1973, 73, 487; (b) Akutagawa, S. Bull. Chem. Soc. Jpn.
1976, 49, 3646; (c) Baker, R.; Crimmin, M. J. J. Chem. Soc., Perkin Trans. 1 1979,
1264; (d) Wilke, G. Angew. Chem., Int. Ed. 1988, 27, 185.
shown in Scheme 2. Aromatic amine-imines would react with
mono butadiene-Ni(0) species I, in the presence of dimethylzinc,
to form azanickelacyclo intermediate III providing dienylamine 1
by virtue of the insertion of alkyne. On the other hand, for less
reactive aliphatic amine-imines, the potential of I to undergo
oxidative cyclization might be insufficient to lead to III.7 Thus, a
small equilibrium concentration and the less populated bis-butadi-
ene-nickel(0) complex IV are assumed to display higher reactivity
than I owing to its greater polarizability, and would be followed by
cis-insertion of an alkyne at the terminal carbon of the allylnickel
moiety giving rise to trienylamine 2 through azanickelacycle
intermediate VII.8 The reaction feature of these multi-component
coupling reactions is consistent with the insertion of alkynes
4. Kimura, M.; Kojima, K.; Tatsuyama, Y.; Tamaru, Y. J. Am. Chem. Soc. 2006, 128,
6332.
5. See Supplementary data for details.
6. (a) Kimura, M.; Miyachi, A.; Kojima, K.; Tanaka, S.; Tamaru, Y. J. Am. Chem. Soc.
2004, 126, 14360; (b) Shimizu, M.; Kimura, M.; Watanabe, T.; Tamaru, Y. Org.
Lett. 2005, 7, 637; (c) Kojima, K.; Kimura, M.; Tamaru, Y. Chem. Commun. 2005,
4717; (d) Kimura, M.; Mori, M.; Mukai, N.; Kojima, K.; Tamaru, Y. Chem.
Commun. 2006, 2813; (e) Kojima, K.; Kimura, M.; Ueda, S.; Tamaru, Y.
Tetrahedron 2006, 62, 7512; (f) Kimura, M.; Tatsuyama, Y.; Kojima, K.;
Tamaru, Y. Org. Lett. 2007, 9, 1871.
7. (a) Kimura, M.; Matsuo, S.; Shibata, K.; Tamaru, Y. Angew. Chem., Int. Ed. 1999,
38, 3386; (b) Kimura, M.; Ezoe, A.; Mori, M.; Tamaru, Y. J. Am. Chem. Soc. 2005,
127, 201.
toward a
p-allylnickel(II) complex to form 1,4-pentadienyl nickel
intermediate.9 In the presence of PPh3, the butadiene would
quickly dimerize to give more nucleophilic bis-p-allylnickel
species VI,10 which would readily participate in the reaction with
aldimines to provide trienylamine 2 via insertion of an alkyne
involving a similar allylnickel intermediate VII, irrespective of
the nature of the primary amines.
8. Under similar catalytic system, exposure of same amount of p-anisidine
(0.5 mmol) and benzylamine (0.5 mmol) to PhCHO (1 mmol) provided
a
mixture of dienylamine 1a (86%) and trienylamine 2a (76%) (Eq 1).
Dienylamine 1a was successfully formed from p-anisidine, whereas
trienylamine 2a was produced by benzylamine. This result implies the
reaction feature depends on the electrophilicity of aldimine generated from
aromatic amine or aliphatic amine as shown in Scheme 2. It seems to rule out
the alternative reaction mechanism that amine or the corresponding aldimine
acts as a ligand to enhance the nucleophilicity of allylnickel species.
In summary, we have developed
a Ni-catalyzed multi-
component coupling reaction with alkyne, aldimines, and dim-
ethylzinc to afford (3E,7E,10Z)-dodecatrienylamine in excellent
yields via g1 3-allylnickel species, involving the dimerization
,g
Et
Et
PMPNH2
BnNH2
PhCHO
of butadiene induced by phosphine ligands. The applicability
and scope of this method for the asymmetric syntheses of terp-
enes and physiologically active molecules are currently under
investigations.
(0.5 mmol)
(0.5 mmol)
(4 mmol)
Et
(1 mmol)
(4 mmol)
Ni(acac)2
(0.1 mmol)
Et
Et
Ph
Et
Ph
Me2Zn
(2.4 mmol)
r.t., 20 h
2
Me
NHPMP
Me
NHBn
Acknowledgment
1a (86%)
2a (76%)
We thank financial support from the Ministry of Education, Cul-
ture, Sports, Science, and Technology, of the Japanese Government.
9. (a) Jolly, P. W.. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone,
F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, 1982; Vol. 8, (b) Billington, D.
C.. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon
Press: Oxford, 1991; Vol. 2, p 423; (c) Chiusoli, G. P. Acc. Chem. Res. 1973, 6, 422;
(d) Casser, L.; Chiusoli, G. P.; Guerrieri, F. Synthesis 1973, 509; (e) Llebaria, A.;
Moreto, J. J. Organomet. Chem. 1993, 452, 1; (f) Ikeda, S.; Cui, D.-M.; Sato, Y. J.
Org. Chem. 1994, 59, 6877; (g) Cui, D.-M.; Tsuzuki, T.; Miyake, T.; Ikeda, S.; Sato,
Y. Tetrahedron 1998, 54, 1063.
Supplementary data
Supplementary data associated with this article can be found, in
10. G. Wilke et al. have been established that a Ni(0) complex containing two
molecules of butadiene and PPh3 readily undergoes intramolecular
rearrangement to give bis(
The Organic Chemistry of Nickel; Academic Press: New York, 1974; Vols. I and II,
Ni-catalyzed nucleophilic allylation of carbon monoxide via bis- -allylnickel in
the presence of PPh3 ligand has been reported: (b) Takimoto, M.; Mori, M. J. Am.
Chem. Soc. 2002, 124, 10008; (c) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori,
M. J. Am. Chem. Soc. 2004, 126, 5956; (d) Takimoto, M.; Kajima, Y.; Sato, Y.;
Mori, M. J. Org. Chem. 2005, 70, 8605.
p-allyl)nickel species: (a) Jolly, P. W.; Wilke, G.. In
References and notes
p
1. (a) Tsuji, J. Transition Metal Reagents and Catalysis; Wiley: Chichester, 2000; (b)
Kurosawa, H.; Yamamoto, A. Fundamentals of Molecular Catalysis; Elsevier:
Amsterdam, 2003; (c) Tamaru, Y. Modern Organonickel Chemistry; Wiley-VCH:
Weinheim, 2005.