LETTER
One-Pot Coupling–Addition–SNAr Synthesis of 4H-Thiochromen-4-ones
1259
1) [PdCl2(PPh3)2 (2 mol%), CuI (4 mol%)]
N
Cl
O
N
S
R2
Et3N, THF, 1 h, r.t.
+
R2
Cl
2) Na2S⋅9H2O (5, 1.50 equiv)
EtOH, 90 min, 90 °C, MW
O
7
4
8 (15–53%, 4 examples)
Scheme 4 Coupling–addition–substitution (CAS) sequence to substituted 4H-thiopyrano[2,3-b]pyridin-4-ones 7
(7) (a) Bossert, F. Justus Liebigs. Ann. Chem. 1964, 40, 680.
(b) Schneller, S. W. Adv. Heterocycl. Chem. 1975, 18, 59.
and DEPT NMR experiments, IR, UV/vis, mass spec-
trometry) and combustion analyses.
(c) Nakazumi, H.; Wanatabe, S.; Kitaguchi, T.; Kitao, T.
In comparison the existing protocols for the synthesis of
4H-thiochromen-4-one 1c generally require several steps,
sometimes harsh reaction conditions and longer reaction
times give significantly lower over all yields (Table 3).
The CASNAR sequence represents a straightforward and
rapid access to 4H-thiochromen-4-ones 1 and 4H-thiopy-
rano[2,3-b]pyridin-4-ones 8 in a one-pot fashion and with
a broad scope in the starting materials.
Bull. Chem. Soc. Jpn. 1990, 63, 847.
(8) (a) Truce, W. E.; Goldhamer, D. L. J. Am. Chem. Soc. 1959,
81, 5795. (b) Buggle, K.; Delahunty, J. J.; Philbin, E. M.;
Ryan, N. D. J. Chem. Soc. C 1971, 3168.
(9) Angel, A. J.; Finefrock, A. E.; French, K. L.; Hurst, D. R.;
Williams, A. R.; Rampey, M. E.; Studer-Martinez, S. L.;
Beam, C. F. Can. J. Chem. 1999, 77, 94.
(10) French, K. L.; Angel, A. J.; Williams, A. R.; Hurst, D. R.;
Beam, C. F. J. Heterocycl. Chem. 1998, 35, 45.
(11) (a) Kumar, P.; Rao, A. T.; Pandey, B. Chem. Commun. 1992,
21, 1580. (b) Kumar, P.; Bodas, M. S. Tetrahedron 2001,
57, 9755.
(12) Wadsworth, D. H.; Detty, M. R. J. Org. Chem. 1980, 45,
4611.
(13) For reviews, see: (a) Willy, B.; Müller, T. J. J. ARKIVOC
2008, (i), 195. (b) D’Souza, D. M.; Müller, T. J. J. Chem.
Soc. Rev. 2007, 36, 1095.
(14) For lead reviews on Sonogashira couplings, see, e.g.:
(a) Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara,
N. Synthesis 1980, 627. (b) Sonogashira, K. In Metal-
Catalyzed Cross-Coupling Reactions; Diederich, F.; Stang,
P. J., Eds.; Wiley-VCH: Weinheim, 1998, 203. (c) Doucet,
H.; Hierso, J.-C. Angew. Chem. Int. Ed. 2007, 46, 834.
(d) Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133.
(15) Toda, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1977,
777.
Table 3 Comparison of Existing Protocols for the Synthesis of 1c
Route
Steps
Time
Yield (%)a
Wittig route11
PPA7
3
2
3
1
ca. 3 d
ca. 10 h
ca. 4 d
ca. 2 h
44
71
34
73
Propiolate route5
CASNAR (this work)
a Yield over all steps, starting from commercially available com-
pounds.
Methoxy groups, which proved to be unfavorable in stan-
dard syntheses, are perfectly tolerated in this sequence.
This novel one-pot procedure now opens new avenues to
an interesting class of heterocycles. Studies addressing the
biological activity and electronic properties of 4H-thio-
chromen-4-ones and 4H-thiopyrano[2,3-b]pyridin-4-ones
are currently under investigation.
(16) (a) Karpov, A. S.; Müller, T. J. J. Org. Lett. 2003, 5, 3451.
(b) D’Souza, D. M.; Müller, T. J. J. Nat. Protoc. 2008, 3,
1660.
(17) (a) Müller, T. J. J. Chimica Oggi/Chemistry Today 2007, 25,
70. (b) Müller, T. J. J. Targets Heterocycl. Syst. 2006, 10,
54. (c) Willy, B.; Müller, T. J. J. Eur. J. Org. Chem. 2008,
4157. (d) Willy, B.; Dallos, T.; Rominger, F.; Schönhaber,
J.; Müller, T. J. J. Eur. J. Org. Chem. 2008, 4796.
(e) Willy, B.; Rominger, F.; Müller, T. J. J. Synthesis 2008,
293. (f) Karpov, A. S.; Merkul, E.; Oeser, T.; Müller, T. J. J.
Chem. Commun. 2005, 2581.
Acknowledgment
The authors gratefully acknowledge the Fonds der Chemischen
Industrie, and CEM for a research corporation.
(18) (a) Shvartsberg, M. S.; Ivanchikova, I. D. ARKIVOC 2003,
(xiii), 87. (b) Ivanchikova, I. D.; Shvartsberg, M. S. Russ.
Chem. Bull. 2004, 53, 2303.
References and Notes
(19) Representative Procedure – Synthesis of 2-Phenyl-4H-
thiochromen-4-one (1c; Table 2, Entry 3)
(1) Nakazumi, H.; Ueyama, T.; Kitao, T. J. Heterocycl. Chem.
1985, 22, 1593.
(2) Nakazumi, H.; Ueyama, T.; Kitao, T. J. Heterocycl. Chem.
1984, 21, 193.
(3) Couquelet, J.; Tronche, P.; Niviere, P.; Andraud, G. Trav.
Soc. Pharm. Montpellier 1963, 23, 214.
(4) Holshouser, M. H.; Loeffler, L. J.; Hall, I. H. J. Med. Chem.
1981, 24, 853.
(5) Razdan, R. K.; Bruni, R. J.; Mehta, A. C.; Weinhardt, K. K.;
Papanastassiou, Z. B. J. Med. Chem. 1978, 21, 643.
(6) Dhanak, D.; Keenan, R. M.; Burton, G.; Kaura, A.; Darcy,
M. G.; Shah, D. H.; Ridgers, L. H.; Breen, A.; Lavery, P.;
Tew, D. G.; West, A. Bioorg. Med. Chem. Lett. 1998, 8,
3677.
In a 10 mL microwave tube PdCl2 (PPh3)2 (15 mg, 0.02
mmol) and CuI (8 mg, 0.04 mmol) were dissolved in
degassed THF (4 mL). Then, to this orange soln acid
chloride 3c (1.25 mmol), alkyne 4c (1.00 mmol), and Et3N
(1.05 mmol) were added. The reaction mixture was stirred at
r.t. for 1 h. Finally, Na2S·9H2O (5) followed by EtOH (1 mL)
were added to this suspension, and the reaction mixture was
heated at 90 °C in the microwave cavity for 90 min. After
cooling to r.t., the solvent was removed under reduced
pressure, and the crude products were purified by SiO2 flash
column chromatography (hexane–EtOAc) to afford the
analytically pure 4H-thiochromen-4-one 1c in 174 mg
(73%) yield as a yellow solid, mp 122 °C.
Synlett 2009, No. 8, 1255–1260 © Thieme Stuttgart · New York