C O M M U N I C A T I O N S
why 8ArG derivatives are excellent platforms for the development
of well-defined, predictable, and reliable supramolecular structures
that form with high fidelity.7
We are currently studying the scope and limitations of other
8ArG derivatives that also show a propensity to form dodecamers.
Adding these to the existing octamer- and hexadecamer-forming
8ArG derivatives will enable the preparation of a wide variety of
self-assembled dendrimers and other nanostructures where the size
and the number of functional elements can be fine-tuned for specific
applications. The results of such studies will be reported in due
course.
Acknowledgment. We thank NIH-SCoRE (2506GM08102) for
financial support. M.C.R.S. thanks NASA-PR and PRIDCO, and
M.G.A. thanks NIH-RISE for graduate fellowships. I.A.D. thanks
the MARC program for an undergraduate fellowship.
Supporting Information Available: Detailed synthetic procedures,
characterization for all new compounds, experimental protocols and
NMR data. This material is available free of charge via the Internet at
References
(1) (a) Davis, J. T.; Spada, G. P. Chem. Soc. ReV. 2007, 36, 296–313. (b)
Alberti, P.; Bourdoncle, A.; Sacca, B.; Lacroix, L.; Mergny, J. L. Org.
Biomol. Chem. 2006, 4, 3383–3391. (c) Spada, G. P.; Gottarelli, G. Synlett
2004, 596–602. (d) Davis, J. T. Angew. Chem., Int. Ed. 2004, 43, 668–
698.
(2) Neidle, S.; Balasubramanian, S. Quadruplex Nucleic Acids; The Royal
Society of Chemistry Publishing: Cambridge, 2006.
(3) (a) Betancourt, J. E.; Mart´ın-Hidalgo, M.; Gubala, V.; Rivera, J. M. J. Am.
Chem. Soc. 2009, 131, 3186–3188. (b) Gonza´lez-Rodr´ıguez, D.; Van
Dongen, J.; Lutz, M.; Spek, A.; Schenning, A.; Meijer, E. Nature Chem.
2009, 1, 151–155.
(4) (a) Kwan, I. C.; She, Y.; Wu, G. Chem. Commun. 2007, 4286–4288. (b)
Cai, M. M.; Shi, X. D.; Sidorov, V.; Fabris, D.; Lam, Y. F.; Davis, J. T.
Tetrahedron 2002, 58, 661–671.
(5) Shi, X. D.; Mullaugh, K. M.; Fettinger, J. C.; Jiang, Y.; Hofstadler, S. A.;
Davis, J. T. J. Am. Chem. Soc. 2003, 125, 10830–10841.
(6) Lehn, J. M. Science 2002, 295, 2400–2403.
(7) (a) Garc´ıa-Arriaga, M.; Hobley, G.; Rivera, J. M. J. Am. Chem. Soc. 2008,
130, 10492–10493. (b) Betancourt, J. E.; Rivera, J. M. Org. Lett. 2008,
10, 2287–2290. (c) Gubala, V.; De Jesus, D.; Rivera, J. M. Tetrahedron
Lett. 2006, 47, 1413–1416. (d) Gubala, V.; Betancourt, J. E.; Rivera, J. M.
Org. Lett. 2004, 6, 4735–4738.
(8) Todd, E. M.; Quinn, J. R.; Park, T.; Zimmerman, S. C. Isr. J. Chem. 2005,
45, 381–389.
(9) Sessler, J. L.; Sathiosatham, M.; Doerr, K.; Lynch, V.; Abboud, K. A.
Angew. Chem., Int Ed. 2000, 39, 1300–1303.
(10) Cram, D. Angew. Chem., Int. Ed. 1988, 27, 1009–1020.
(11) For a recent example on the use of dipole-dipole interactions to promote
self-assembly, see: Li, Y.; Pink, M.; Karty, J. A.; Flood, A. H. J. Am. Chem.
Soc. 2008, 130, 17293–17295.
Figure 4. (a) Top and (b) side views for a model of (3PyGi)12 where some
atoms are omitted for clarity. (a) The top tetrad (T3) has its “tail” (i.e.,
rotation in the direction of the magenta arrows is counterclockwise, Figure
S18)13,18 facing up and its “head” in contact with the “tail” of the middle
tetrad (T2). (b) T1 and T2 correspond to the initially formed octamer, and
their interphase is hh. T3 assembles on T2 with an interphase of th. The
black double-headed arrows show selected NOEs indicating intratetrad (T3)
and intertetrad (T1-T2-T3) connectivities.13 (c) Attractive CH-π interac-
tions between the eight subunits in T1 and T2 stabilize (PhGi)8 and
(3PyGi)12. (d) Dipole-dipole interactions between the subunits in T2 and
T3 are only possible for 3PyGi but not for PhGi. van der Waals surfaces
with electrostatic potentials illustrate the difference in electron density
between opposite sides of the pyridyl groups for subunits in (e) T3 and (f)
T2, as viewed from the “head” and the “tail”, respectively (see Figure S20
for more details).13,19
(12) Hobley, G.; Gubala, V.; Rivera-Sa´nchez, M d. C.; Rivera, J. M. Synlett
2008, 1510–1514.
(13) See Supporting Information.
(14) (a) Kaucher, M. S.; Lam, Y. F.; Pieraccini, S.; Gottarelli, G.; Davis, J. T.
Chem.sEur. J. 2005, 11, 164–173. (b) Cohen, Y.; Avram, L.; Frish, L.
Angew. Chem., Int. Ed. 2005, 44, 520–554. (c) Macchioni, A.; Ciancaleoni,
G.; Zuccaccia, C.; Zuccaccia, D. Chem. Soc. ReV. 2008, 37, 479–489.
(15) Lsac is the ratio at which assembled to disassembled species is 1:1. (a)
Ercolani, G. J. Phys. Chem. B 1998, 102, 5699–5703. (b) Chi, X.; Guerin,
A. J.; Haycoc, R. A.; Hunter, C. A.; Sarson, L. D. J. Chem. Soc., Chem.
Commun. 1995, 2563–2565.
(16) Ercolani, G. J. Am. Chem. Soc. 2003, 125, 16097–16103.
(17) Weiss, J. N FASEB J. 1997, 11, 835–841.
(18) The head of the tetrad is defined as the side in which rotation following
the direction of the N1H’s is clockwise. See Figure S18 for more
information. Smith, F. W.; Lau, F. W.; Feigon, J. Proc. Natl. Acad. Sci.
U.S.A. 1994, 91, 10546–10550.
(19) Molecular modeling was performed with AMBER 94 (MacroModel), version
9.5, Maestro 8.0.315; Schro¨dinger, LLC: New York, 2007, using CHCl3
as a continuum solvent. The electrostatic potential maps were calculated
using the Hartree-Fock (3-21G) method from Spartan ′08.
ing intrinsic parameters. The contrasting behavior of PhGi and
3PyGi illustrates how specific information can be programmed6
into 8ArG subunits by increasing their preorganization10 and/or the
number of contacts that engage in attractive interactions. This is
JA9040384
9
J. AM. CHEM. SOC. VOL. 131, NO. 30, 2009 10405