D. B. Llewellyn, A. Wahhab / Tetrahedron Letters 50 (2009) 3939–3941
3941
Cl
N
Considering the divergent nature of the synthesis and the ease
with which libraries of SAH analogues can be generated, the con-
cepts presented here should find wide spread use in both academic
research and drug development.
CO2Me
N
O
1) BSA
N
N
Cl
N
1
+
S
HN
2) TMSOTf
N
N
H
N
Cl
Fmoc
AcO
OAc
8
, 81%
Cl
Acknowledgements
1) NHR3R
2) KOH
4
CO2H
N
O
N
NR3R4
The authors are grateful to Dr. Daniel Delorme and Dr. Ronny
Preifer for their useful discussions.
S
H2N
N
N
HO OH
Cl
9a-e
Supplementary data
Scheme 4. Synthesis of 9a–e.
Supplementary data (experimental procedures and spectro-
scopic characterizations of compounds 1–5, 6a–d, 7a–d and 9a–
e) associated with this paper can be found, in the online version,
Table 2
Yields for the synthesis of 9a–ea
Entry
1
Product
HNR3R4
Yield (%)
58
References and notes
N
H
9a
1. (a) Montgomery, J. A.; Clayton, S. J.; Thomas, J. H.; Shannon, W. M.; Arnette, G.;
Bodner, A. J.; Kion, I.; Cantoni, G. L.; Chiang, P. K. J. Med. Chem. 1982, 25, 626–
629; (b) Ueland, P. M. Pharmacol. Rev. 1982, 34, 223–253; (c) Miles, R. W.;
Nielsen, L. P. C.; Ewing, G. J.; Yin, D.; Borchardt, R. T.; Robins, M. J. J. Org. Chem.
2002, 67, 8258–8260; (d) Steere, J. A.; Sampson, P. B.; Honek, J. F. Bioorg. Med.
Chem. Lett. 2002, 12, 457–460.
2. Several representative examples include: (a) Borchardt, R. T.; Wu, Y. S. J. Med.
Chem. 1974, 17, 863–868; (b) Borchardt, R. T.; Huber, J. A.; Wu, Y. S. J. Med.
Chem. 1974, 17, 868–873; (c) Coward, J. K.; Bussolotti, D. L.; Chang, C. J. Med.
Chem. 1974, 17, 1286–1289; (d) Borchardt, R. T. Biochem. Pharmacol. 1975, 24,
1542–1544; (e) Borchardt, R. T.; Wu, Y. S. J. Med. Chem. 1975, 18, 300–304; (f)
Borchardt, R. T.; Huber, J. A.; Wu, Y. S. J. Med. Chem. 1976, 19, 1094–1099; (g)
Borchardt, R. T.; Wu, Y. S.; Wu, B. S. J. Med. Chem. 1978, 21, 1099–1307; (h)
Houston, D. M.; Matuszewaka, B.; Borchardt, R. T. J. Med. Chem. 1985, 28, 478–
482; (i) Kumar, R.; Srivastava, R.; Sing, R. K. Bioorg. Med. Chem. Lett. 2008, 16,
2276–2285.
H2N
N
2
3
4
9b
9c
54
63
N
NH
H2N
HN
9d
9e
69
71
O
5
H2N
a
Only isolated yields are reported.
3. (a) Kikugawa, K.; Ichino, M. Tetrahedron Lett. 1971, 2, 87–90; (b) Borchardt, R.
T.; Huber, J. A.; Wu, Y. S. J. Org. Chem. 1976, 41, 565–567; (c) Ramalingam, K.;
Woodard, R. W. J. Org. Chem. 1984, 49, 1291–1293; (d) Robins, M. J.; Hansske,
F.; Wnuk, S. F.; Kanai, T. Can. J. Chem. 1991, 69, 1468–1474.
4. (a) Serafinowski, P. Synthesis 1985, 926–928; (b) Serafinowski, P.; Dorland, E.;
Harrap, R. J. Med. Chem. 1992, 35, 4576–4583.
N
N
O
N
N
O
Cl
N
N
1) Me2NH
2) NH3/MeOH
HO
BzO
5. For several examples of nucleotide syntheses see: (a) Antonini, I.; Cristalli, G.;
Franchetti, P.; Grifantini, M.; Martelli, S.; Petrelli, F. J. Pharm. Sci. 1984, 73, 366–
369; (b) Sági, G.; Szu˜cs, K.; Vereb, G.; Ötvös, L. J. Med. Chem. 1992, 35, 4549–
4556; (c) Devlin, T. A.; Jebaratnam, D. J. Synth. Commun. 1995, 255, 711–718;
(d) Bookser, B. C.; Raffaele, N. B. J. Org. Chem. 2007, 72, 173–179.
6. Vorbrüggen, H.; Ruh-Pohlenz, C. In Handbook of Nucleoside Synthesis; John
Wiley and Sons: New York, 2001.
7. LRMS analysis of 4, after treatment with TFA/H2O, indicated that the expected
triol was formed (ES-MS calcd (M+H)+ m/z 282, found 282). However, attempts
to isolate the product were unsuccessful. Neutralization of the reaction mixture
with sodium bicarbonate and re-analysis by LRMS indicated that the product
underwent a dehydration (ES-MS calcd (MꢀH2O+H)+ m/z 264, found 264). One
possible explanation for this loss of water is imine formation between the un-
protected homocysteine nitrogen and the aldehyde of the open-chain ribose
unit.
N
N
N
HO
OH
BzO
OBz
11
Cl
10
Cl
1) SOCl2, Pyr.
2) NH4OH
N
N
HO2C
H2N
O
N
N
O
N
N
NaOH
S
Cl
N
N
N
HO
OH
N
DL-homocysteine
HO
OH
Cl
Cl
9a
12
Scheme 5. Alternative synthesis of 9a from its parent nucleoside.
8. (a) Seela, F.; Münster, I.; Löchner, U.; Rosemeyer, H. Helv. Chim. Acta 1998, 81,
1139–1155; (b) Boryski, J.; Grynkiewicz, G. Synthesis 2001, 14, 2170–2174; (c)
Parsch, J.; Engels, J. W. J. Am. Chem. Soc. 2002, 124, 5664–5672.
9. Cristalli, G.; Franchetti, P.; Grifantini, M.; Vittori, S.; Bordoni, T.; Geroni, C. J.
Med. Chem. 1987, 30, 1686–1688.
10. Itoh, T.; Sugawara, T.; Mizuno, Y. Nucleosides Nucleotides 1982, 12, 179–190.
11. For examples of the use of N6-alkylated adenosine and SAH analogues see: (a)
Thompson, R. D.; Secunda, S.; Daly, J. W.; Olsson, R. A. J. Med. Chem. 1991, 34,
3388–3390; (b) Keeling, S. E.; Albinson, D. F.; Ayres, B. E.; Butchers, P. R.;
Chambers, C. L.; Cherry, P. C.; Ellis, F.; Ewan, G. B.; Gregson, M.; Knight, J.; Mills,
K.; Ravencroft, P.; Reynolds, L. H.; Sanjar, S.; Sheenhan, M. J. Bioorg. Med. Chem.
Lett. 2000, 10, 403–406; (c) van Tilburg, E. W.; van der Klein, P. A. M.; von
Frijtag Drabbe Künzel, J.; de Groote, M.; Stannek, C.; Lorenzen, A.; Ijzerman, A.
P. J. Med. Chem. 2001, 44, 2966–2975; (d) Lin, Q.; Jiang, F.; Schultz, P. G.; Gray,
N. J. Am. Chem. Soc. 2001, 123, 11608–11613.
example, the preparation of 9a from 10,12 via intermediates 11 and
12 (Scheme 5) required four steps and occurred with an overall
yield of 11%, which is a significantly longer and lower yielding
route than that used for the synthesis of 9a from intermediate 1
(Table 2, entry 1).
In conclusion, a new method to synthesize base-substituted
analogues of SAH is described. By using 1 as a starting point, SAH
analogues can be prepared in as few as two synthetic steps rather
than the usual four steps that would be required to prepare the
same analogues from TAR. In addition, the synthesis of SAH
analogues from 1 offers milder reaction conditions and generally
gives higher overall yields than previously developed procedures.
12. Hocek, M.; Holy, A.; Dvorakova, H. Collect. Czech. Chem. Commun. 2002, 67, 325–
335.