M. Eto et al. / Tetrahedron 67 (2011) 7400e7405
7405
2. Suezawa, H.; Yoshida, T.; Hirota, M.; Takahashi, H.; Umezawa, Y.; Honda, K.;
Tsuboyama, S.; Nishio, M. J. Chem. Soc., Perkin Trans. 2 2001, 2053e2058.
3. (a) Umezawa, Y.; Nishio, M. Bioorg. Med. Chem. 1998, 6, 493e504; (b) Umezawa,
Y.; Nishio, M. Bioorg. Med. Chem. 2000, 8, 2643e2650; (c) Umezawa, Y.; Nishio,
M. Nucleic Acids Res. 2002, 30, 2183e2192; (d) Umezawa, Y.; Nishio, M. Bio-
polymers 2005, 79, 248e258.
4. (a) Harano, K.; Yasuda, M.; Ida, Y.; Komori, T.; Taguchi, T. Cryst. Struct. Commun.
1981, 10, 165e171; (b) Eto, M.; Harano, K.; Hisano, T.; Kitamura, T. J. Heterocycl.
Chem.1992, 29, 311e315; (c) Kitamura, T.; Harano, K.; Hisano, T. Chem. Pharm. Bull.
1992, 40, 2255e2261; (d) Eto, M.; Ito, F.; Kitamura, T.; Harano, K. Heterocycles
1994, 38, 2159e2163; (e) Eto, M.; Ito, F.; Kitamura, T.; Harano, K. Heterocycles
1996, 43,1159e1163; (f) Watanabe, A.; Moriguchi, M.; Ito, F.; Yoshitake, Y.; Eto, M.;
Harano, K. Heterocycles 2000, 53, 1e6; (g) Ito, F.; Moriguchi, T.; Yoshitake, Y.; Eto,
M.; Yahara, S.; Harano, K. Chem. Pharm. Bull. 2003, 51, 688e696; (h) Watanabe, A.;
Yamaguchi, K.; Ito, F.; Yoshitake, Y.; Harano, K. Heterocycles 2007, 71, 343e359; (i)
Eto, M.; Ito, F.; Sato, H.; Shinohara, I.; Yamaguchi, K.; Yoshitake, Y.; Harano, K.
Heterocycles 2009, 78,1485e1496; (j) Eto, M.; Yamaguchi, K.; Shinohara, I.; Ito, F.;
Yoshitake, Y.; Harano, K. Tetrahedron 2010, 66, 898e903.
P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian
03, Revision C.02; Gaussian,: Wallingford CT, 2004.
13. The DTA (differential thermal analysis) of 5d$acetone complex showed a broad
endothermic peak corresponding to the guest losses at 89 ꢂC, followed by an
endothermic peak at 221 ꢂC caused by melting of the host. The total weight loss
was 7.7%. The value is much smaller than the expected loss of 15.2% for a 1:1
ratio. These facts indicated that the measurement sample used is the mixture of
the complex and the guest-free crystal (see Fig. S3).
14. A reviewer pointed out that the existence of the CH/N interaction between the
methyl hydrogen and NCO
p system is a questionable. Only a few examples
(NH/N type) of protonation toward amide nitrogen atom were known as ‘amide
proton sponge’. (a) Cox, C.; Wack, H.; Lectka, T. Angew. Chem., Int. Ed. 1999, 38,
798e800; (b) Cox, C.; Lectka, T. Org. Lett. 1999, 1, 749e752.
15. B3LYP/6-31G(d) estimated ground-state structures and energies of 5 (anti)
with/without intramolecular OH/N interaction are depicted as follows: the GSa
including intramolecular OH/N hydrogen bond between the OH and NCO
moiety is ca. 2.3 kcal/mol more stable than that of GSbThe details will be re-
ported in the near future.
5. Johnson, C. K. ORTEP-II: A FORTRAN Thermal-Ellipsoid Plot Program for Crystal
Structure Illustrations; National Laboratory: Oak Ridge, 1976; Report ORNL-5138.
6. (a) Taylor, R.; Kennard, O. J. Am. Chem. Soc. 1982, 104, 5063e5070; (b) Desiraju, G.
R. Acc. Chem. Res.1991, 24, 290e296; (c) Steiner, T.; Kanters, J. A.; Kroon, J. A. Chem.
Commun. 1996, 1277e1278; (d) Steiner, T. Cryst. Rev. 1996, 6, 1e57.
7. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985,
107, 3902e3909.
8. Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209e220.
9. MOPAC2009: Stewart, J.J.P. Stewart Computational Chemistry, Version 9.062M
10. To confirm the reliability of PM6 method, typical compounds (A,19 B,20 C21
)
containing intramolecular edge-to-face conformation were examined.
16. Recrystallization of 5d from ethanol afforded colorless prisms. The elemental
analysis indicates that the crystal did not enclathrate ethanol. Calcd for
C28H27NO2: C, 82.53: H, 6.18: N, 3.44. Found: C, 82.36, H, 6.21: N, 3.64. The X-
ray analysis also indicated the crystal is guest-free. The crystal data of guest-
free 5d are as follows: C28H25NO2, M¼407.5, triclinic, space group P(ꢀ1) (#2),
¼88.318 (5)ꢂ,
b
¼67.844 (4)ꢂ,
ꢀ
The calculations well reproduced the structural features of the crystal geometry.
For details of the PM6 investigations see the Supplementary data (Figs. S9eS11).
11. In the calculation, the central benzene molecule is freely optimized and the
coordinates of surrounding molecules are frozen. The stabilization energy due
to inclusion of benzene by four edge-to-face interactions is calculated.
a¼12.4728 (16), b¼13.676 (3), c¼14.200 (2) A,
a
3
3
ꢂ
ꢀ
g
¼84.314 (5) , V¼2232.3 (6) A , Z¼4, Dc¼1.212 g/cm , R¼0.089, Rw¼0.112,
GOF¼1.063. The maximum peaks on the final difference Fourier map corre-
3
ꢀ
sponded to 0.64 e/A .
17. (a) SIR2008: Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano,
G.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Siliqi, D.; Spagna, R. J. Appl.
Crystallogr. 2007, 40, 609e613; (b) CrystalStructure 4.0: Crystal Structure
Analysis Package; Rigaku Corporation: Tokyo 196-8666, Japan, 2000e2010;
(c) CRYSTALS Issue 11: Carruthers, J. R.; Rollett, J. S.; Betteridge, P. W.; Kinna,
D.; Pearce, L.; Larsen, A.; Gabe, E.; Chemical Crystallography Laboratory:
Oxford, UK, 1999.
18. Senda, N. Idemitsu Technical Report 2006, 49, 106e111.
19. Yoshitake, Y.; Misaka, J.; Setoguchi, K.; Abe, M.; Kawaji, T.; Eto, M.; Harano, K.
J. Chem. Soc., Perkin Trans. 2 2002, 9, 1161e1169.
12. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.
J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G.
A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;
Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Fores-
man, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov,
B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.;
Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill,
20. Boyd, D. R.; Evans, T. A.; Jennings, W. B.; Malone, J. F.; O’Sullivan, W.; Smith, A.
Chem. Commun. 1996, 2269e2270.
21. Schladetzky, K. D.; Haque, T. S.; Gellman, S. H. J. Org. Chem. 1995, 60,
4108e4113.