5092
C.C. Scarborough et al. / Tetrahedron 65 (2009) 5084–5092
10. (a) Zinner, S. C.; Herrmann, W. A.; Ku¨hn, F. E. J. Organomet. Chem. 2008, 693,
4.3.12. Pd complex 20
1543–1546; (b) Baskakov, D.; Herrmann, W. A.; Herdtweck, E.; Hoffmann, S. D.
Organometallics 2007, 26, 626–632; (c) Roland, S.; Audouin, M.; Mangeney, P.
Organometallics 2004, 23, 3075–3078.
Prepared from 18 analogously to the above synthesis of 19, using
AgO2CCF3 in place of AgOAc. Product was obtained in w100% yield
(67 mg) as a dark brown solid. HRMS: m/z (ESI) calculated
11. Rogers, M. M.; Stahl, S. S. Top. Organomet. Chem. 2007, 21, 21–46.
12. Sigman, M. S.; Jensen, D. R. Acc. Chem. Res. 2006, 39, 221–229.
13. Mun˜iz, K. Adv. Synth. Catal. 2004, 346, 1425–1428.
[M]þ¼491.3426, measured 491.3437
(D
¼2.2 ppm). 1H NMR
(300 MHz, CDCl3) (all peaks are rather broad) 1.03–1.29 (m, 36H),
2.33 (m, 6H), 2.51 (m, 6H), 5.84–5.92 (m, 4H), 7.03–7.91 (m, 16H),
8.89 (br s, 2H). 13C NMR (75 MHz, CDCl3) 15.5, 21.4, 21.7, 27.1, 27.4,
27.6, 28.2, 38.3, 39.4, 66.1, 66.9, 72.4, 118.7, 123.1, 124.7, 125.0, 127.3,
128.4, 129.3, 129.6, 132.0, 133.2, 134.1, 137.0, 137.3, 146.7, 147.4.
14. Rogers, M. M.; Wendlandt, J. E.; Guzei, I. A.; Stahl, S. S. Org. Lett. 2006, 8, 2257–2260.
15. (a) Scarborough, C. C.; Popp, B. V.; Guzei, I. A.; Stahl, S. S. J. Organomet. Chem.
2005, 690, 6143–6155; (b) Scarborough, C. C.; Grady, M. J. W.; Guzei, I. A.;
Gandhi, B. A.; Bunel, E. E.; Stahl, S. S. Angew. Chem., Int. Ed. 2005, 44, 5269–5272.
16. Such 7NHCs were first predicted in a computational study: Kastrup, C. J.; Old-
field, S. V.; Rzepa, H. S. J. Chem. Soc., Dalton Trans. 2002, 2421–2422.
17. The synthetic inaccessibility of such NHC–Pd(O2CR)2 complexes appears to
arise from ortho-metallation of the carboxylate complex. For a more detailed
discussion, see: Rogers, M. M. Ph.D. Thesis, University of Wisconsin-Madison,
Madison, WI, 2007.
Acknowledgements
18. Attempts to resolve amidinium salts with methyl groups in the 3 and 30 posi-
tions of the biphenyl moiety were unsuccessful. For further details, see: Scar-
borough, C.C. Ph.D. Thesis, University of Wisconsin-Madison, Madison, WI,
2008.
CCS is grateful to the American Chemical Society Division of
Organic Chemistry for a graduate fellowship. This work was funded
by the National Institutes of Health (R01 GM67173) and a UW-
Madison Graduate School Technology Transfer Grant.
19. Following our initial studies on 7NHCs, Herrmann and co-workers reported that
amidinium salts derived from BINAM could be accessed with secondary alkyl
and aryl nitrogen substituents when phosgene was added to the mono-for-
mylated diamine: Herrmann, W. A.; Baskakov, D.; Ruhland, K. J. Heterocycl.
Chem. 2007, 44, 237–239. In our hands, these amidinium salts were highly
unstable to water and difficult to work with.
References and notes
1. (a) Gade, L. H.; Bellemin-Laponnaz, S. Top. Organomet. Chem. 2007, 21, 117–157;
(b) Ce´sar, V.; Bellemin-Laponnaz, S.; Gade, L. H. Chem. Soc. Rev. 2004, 33, 619–
636; (c) Perry, M. C.; Burgess, K. Tetrahedron: Asymmetry 2003, 14, 951–961.
2. Chiral bidentate NHCs have been met with more success than chiral mono-
dentate NHCs. As notable examples, see: (a) Lee, Y.; Akiyama, K.; Gillingham,
D. G.; Brown, M. K.; Hoveyda, A. H. J. Am. Chem. Soc. 2008, 130, 446–447; (b)
Kacprzynski, M. A.; May, T. L.; Kazane, S. A.; Hoveyda, A. H. Angew. Chem., Int.
Ed. 2007, 46, 4554–4558; (c) Gillingham, D. G.; Hoveyda, A. H. Angew. Chem., Int.
Ed. 2007, 46, 3860–3864; (d) Brown, M. K.; May, T. L.; Baxter, C. A.; Hoveyda, A.
H. Angew. Chem., Int. Ed. 2007, 46, 1097–1100; (e) Lee, Y.; Hoveyda, A. H. J. Am.
Chem. Soc. 2006, 128, 15604–15605; (f) Van Veldhuizen, J. J.; Campbell, J. E.;
Giudici, R. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 6877–6882; (g) Larsen,
A. O.; Leu, W.; Oberhuber, C. N.; Campbell, J. E.; Hoveyda, A. H. J. Am. Chem. Soc.
2004, 126, 11130–11131; (h) Van Veldhuizen, J. J.; Gillingham, D. G.; Garber, S. B.;
Kataoka, O.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 12502–12508; (i) Van
Veldhuizen, J. J.; Garber, S. B.; Kingsbury, J. S.; Hoveyda, A. H. J. Am. Chem. Soc.
2002, 124, 4954–4955; (j) Zhu, Y.; Burgess, K. J. Am. Chem. Soc. 2008, 130, 8894–
8895; (k) Fan, Y.; Cui, X.; Burgess, K.; Hall, M. B. J. Am. Chem. Soc. 2004, 126,
16688–16689; (l) Perry, M. C.; Cui, X.; Powell, M. T.; Hou, D.-R.; Reibenspies, J.
H.; Burgess, K. J. Am. Chem. Soc. 2003, 125, 113–123; (m) Powell, M. T.; Hou, D.-
R.; Perry, M. C.; Cui, X.; Burgess, K. J. Am. Chem. Soc. 2001, 123, 8878–8879.
3. (a) Berlin, J. M.; Goldberg, S. D.; Grubbs, R. H. Angew. Chem., Int. Ed. 2006, 45,
7591–7595; (b) Funk, T. W.; Berlin, J. M.; Grubbs, R. H. J. Am. Chem. Soc. 2006,
128, 1840–1846; (c) Seiders, T. J.; Ward, D. W.; Grubbs, R. H. Org. Lett. 2001, 3,
3225–3228.
20. (a) Shabashov, D.; Daugulis, O. J. Org. Chem. 2007, 72, 7720–7725; (b) Daugulis,
O.; Zaitsev, V. G. Angew. Chem., Int. Ed. 2005, 44, 4046–4048 This reaction was
inspired by an early report by Tremont and co-workers who reported a Pd-
catalyzed ortho methylation of acetanilides using MeI and AgOAc: (c) Tremont,
S. J.; Rahman, H. U. J. Am. Chem. Soc. 1984, 106, 5759–5760.
21. Scarborough, C. C.; McDonald, R. I.; Hartmann, C.; Sazama, G. T.; Bergant, A.;
Stahl, S. S. J. Org. Chem. 2009, 74, 2613–2615.
22. For the synthesis and resolution of this chiral diamine, see: Gillespie, K. M.;
Sanders, C. J.; O’Shaughnessy, P.; Westmoreland, I.; Thickitt, C. P.; Scott, P. J. Org.
Chem. 2002, 67, 3450–3458.
23. Crystallographic data (excluding structure factors) for the structures in this
paper have been deposited with the Cambridge Crystallographic Data Centre as
supplementary publication nos. 718220 (9), 718221 ((S)-14) and 718222 (19)
CCDC. Copies of the data can be obtained, free of charge, on application to
CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: þ44-(0)1223-336033 or
24. (a) Saba, S.; Brescia, A. M.; Kaloustian, M. K. Tetrahedron Lett. 1991, 32, 5031–
5034; (b) Alder, R. W.; Blake, M. E.; Bufali, S.; Butts, C. P.; Orpen, A. G.; Schu¨tz, J.;
Williams, S. J. J. Chem. Soc., Perkin Trans. 1 2001, 1586–1593.
25. The use of microwave irradiation to improve reaction times and yields in the
synthesis of 5-membered amidinium salts has been demonstrated: Aidouni, A.;
Demonceau, A.; Delaude, L. Synlett 2006, 493–495; This strategy has also been
applied by: Luan, X.; Mariz, R.; Gatti, M.; Costabile, C.; Poater, A.; Cavallo, L.;
Linden, A.; Dorta, R. J. Am. Chem. Soc. 2008, 130, 6848–6858. In the present case,
use of microwave irradiation is critical in obtaining reasonable yields of these
7-membered amidinium salts.
4. Ma, Y.; Song, C.; Ma, C.; Sun, Z.; Chai, Q.; Andrus, M. B. Angew. Chem., Int. Ed.
2003, 42, 5871–5874.
26. Scarborough, C.C. Ph.D. Thesis, University of Wisconsin-Madison, Madison, WI,
2008.
5. Song, C.; Ma, C.; Ma, Y.; Feng, W.; Ma, S.; Chai, Q.; Andrus, M. B. Tetrahedron Lett.
2005, 46, 3241–3244.
27. The dimeric catalyst (S,S)-29 was used in conjunction with a silver additive in
place of the monomeric catalyst (S)-30 because (S)-30 was prone to de-
composition over prolonged storage periods. Control experiments in the cy-
clization of 2 revealed that the same results are obtained when (S,S)-29 with
4 equiv of AgTFA were employed in the catalytic mixture as when (S)-30 was
employed.
28. Yip, K.-T.; Yang, M.; Law, K.-L.; Zhu, N.-Y.; Yang, D. J. Am. Chem. Soc. 2006, 128,
3130–3131.
29. Jensen, D. R.; Sigman, M. S. Org. Lett. 2005, 5, 63–65.
6. (a) Jia, Y.-X.; Hillgren, J. M.; Watson, E. L.; Marsden, S. P.; Ku¨ndig, E. P. Chem.
Commun. 2008, 4040–4042; (b) Ku¨ ndig, E. P.; Seidel, T. M.; Jia, Y.-X.; Bernar-
dinelli, G. Angew. Chem., Int. Ed. 2007, 46, 8484–8487. This transformation was
first developed by Lee and Hartwig.7a
7. (a) Lee, S.; Hartwig, J. F. J. Org. Chem. 2001, 66, 3402–3415; This reaction has also
been attempted with other chiral NHCs, albeit with very low enantioselectivity: (b)
Glorius, F.; Altenhoff, G.; Goddard, R.; Lehmann, C. Chem. Commun. 2002, 2704–
2705; (c) Arao, T.; Kondo, K.; Aoyama, T. Tetrahedron Lett. 2006, 47, 1417–1420.
8. Winn, C. L.; Guillen, F.; Pytkowicz, J.; Roland, S.; Mangeney, P.; Alexakis, A.
J. Organomet. Chem. 2005, 690, 5672–5695.
30. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J.
Organometallics 1996, 15, 1518–1520.
9. Sato, Y.; Hinata, Y.; Seki, R.; Oonishi, Y.; Saito, N. Org. Lett. 2007, 9, 5597–5599.