scribed a palladium-catalyzed oxidative ethoxycarbonylation
of an aromatic C-H bond with diethyl azodicarboxylate for
ortho-selective ethoxycarbonylation of aromatic C-H
bonds.11 Recently, Yu also reported the synthesis of 1,2- and
1,3-dicarboxylic acids via Pd(II)-catalyzed carboxylation of
aryl and vinyl C-H bonds.12 Very recently, Kakiuchi
reported ruthenium-catalyzed amino- and alkoxycarbonyla-
tions with carbamoyl chlorides and alkyl chloroformates via
aromatic C-H bond cleavage.13 However, the generality of
the applicable carbonyl functional groups via C-H bond
cleavage is still limited. It occurred to us that the com-
mercially available, inexpensive aldehydes could serve as
the acylation reagents for C-H bond functionalization.
Herein, we report palladium-catalyzed regioselective acy-
lations of aromatic C-H bonds using aldehydes in the
presence of air as the ideal oxidant, affording the aromatic
ketones in moderate to good yields.
Our initial investigations focused on the acylation of
2-phenylpyridine with benzaldehyde, and the results outlined
in Table 1. Disappointingly, no desired product was obtained
Table 1. Screening for the Optimal Conditionsa
(3) (a) Shi, Z.; Li, B.; Wan, X.; Cheng, J.; Fang, Z.; Cao, B.; Qin, C.;
Wang, Y. Angew. Chem., Int. Ed. 2007, 46, 5554. (b) Tan, K. L.; Bergman,
R. G.; Ellman, J. A. J. Am. Chem. Soc. 2001, 123, 2685. (c) Pastine, S. J.;
Gribkov, D. V.; Sames, D. J. Am. Chem. Soc. 2006, 128, 14220. (d) Chiong,
H. A.; Daugulis, O. Org. Lett. 2007, 9, 1449. (e) Xia, J.-B.; You, S.-L.
Organometallics 2007, 26, 4869. (f) Wakui, H.; Kawasaki, S.; Satoh, T.;
Miura, M.; Nomura, M. J. Am. Chem. Soc. 2004, 126, 8658. (g) Hennessy,
E. J.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 12084. (h) Ueda, S.;
Nagasawa, H. Angew. Chem., Int. Ed. 2008, 47, 6411. (i) Roy, A. H.;
Lenges, C. P.; Brookhart, M. J. Am. Chem. Soc. 2007, 129, 2082. (j) Seregin,
I. V.; Ryabova, V.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 7742. (k)
entry
palladium
oxidant
solvent
yield (%)
1
2
3
4
5
6
7
8
9
10
11
12
13
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(acac)2
Pd(OCOCF3)2
PdCl2
Cu(OAc)2
CuBr2
benzoquinone
toluene
toluene
toluene
toluene
dioxane
xylene
DMF
<5b
<5b
<5b
10b
42b
78
<5
<5
60
49
¨
Ozdemir, I.; Demir, S.; Cetinkaya, B.; Gourlaouen, C.; Maseras, F.; Bruneau,
C.; Dixneuf, P. H. J. Am. Chem. Soc. 2008, 130, 1156. (l) Reddy, B. V. S.;
Reddy, L. R.; Corey, E. J. Org. Lett. 2006, 8, 3391. (m) Lane, B. S.; Sames,
D. Org. Lett. 2004, 6, 2897. (n) Wang, D.; Wasa, M.; Giri, R.; Yu, J.-Q.
J. Am. Chem. Soc. 2008, 130, 7190. (o) Lie´gault, B.; Fagnou, K.
Organometallics 2008, 27, 4841. (p) Oi, S.; Fukita, S.; Inoue, Y. Chem.
Commun. 1998, 2439. (q) Ko, S.; Kang, B.; Chang, S. Angew. Chem., Int.
Ed. 2005, 44, 455. (r) Rueping, M.; Sugiono, E.; Azap, C. Angew. Chem.,
Int. Ed. 2006, 45, 2619. (s) Ackermann, L.; Vicente, R.; Althammer, A.
Org. Lett. 2008, 10, 2299.
NMP
xylene
xylene
xylene
xylene
xylene
(4) (a) Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.
J. Am. Chem. Soc. 2006, 128, 7416. (b) Giri, R.; Chen, X.; Yu, J.-Q. Angew.
Chem., Int. Ed. 2005, 44, 2112. (c) Hull, K. L.; Anani, W. Q.; Sanford,
M. S. J. Am. Chem. Soc. 2006, 128, 7134.
53
<5
<5
Pd2(dba)3
(5) (a) Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc.
2004, 126, 9542. (b) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem.
Soc. 2004, 126, 2300. (c) Desai, L. V.; Malik, H. A.; Sanford, M. S. Org.
Lett. 2006, 8, 1141. (d) Desai, L. V.; Stowers, K. J.; Sanford, M. S. J. Am.
Chem. Soc. 2008, 130, 13285.
a 2-Phenylpyridine (0.2 mmol), benzaldehyde (0.3 mmol), Pd (10 mol
%), indicated oxidant, air, dry solvent (2 mL), 120 °C, 24 h. Isolated yield.
b At 110 °C.
(6) (a) Thu, H. Y.; Yu, W. Y.; Che, C. M. J. Am. Chem. Soc. 2006,
128, 9048. (b) Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto, T.; Hiroya,
K. Org. Lett. 2007, 9, 2931.
(7) (a) Tsukada, N.; Mitsuboshi, T.; Setoguchi, H.; Inoue, Y. J. Am.
Chem. Soc. 2003, 125, 12102. (b) Halbritter, G.; Knoch, F.; Wolski, A.;
Kisch, H. Angew. Chem., Int. Ed. Engl. 1994, 33, 1603. (c) Jun, C.-H.;
Hwang, D.-C.; Na, S.-J. Chem. Commun. 1998, 1405. (d) Chatani, N.; Ie,
Y.; Kakiuchi, F.; Murai, S. J. Org. Chem. 1997, 62, 2604.
in the reaction of 2-phenylpyridine with 1.5 equiv of ben-
zaldehyde under the combined system of Pd(OAc)2 (10 mol
%) and Cu(OAc)2 (2 equiv) at 110 °C in air for 24 h.
Benzoquinone was also ineffective for this transformation.
Since aldehydes are sensitive to some oxidants, the choice
of oxidants is crucial for this transformation. Gratifyingly,
employing air as the sole oxidant resulted in the sp2 C-H
acylation of 2-phenylpyridine to afford the desired product
phenyl(2-(pyridin-2-yl)phenyl)methanone 3aa, albeit in only
10% yield (Table 1, entry 4). The reaction temperature and
solvent were also crucial for the reaction, and the yield
sharply improved to 78% under air by replacing toluene with
xylene as the solvent at 120 °C (Table 1, entry 6). Under an
O2 atmosphere, part of benzaldehyde was oxidized into
benzoic acid and the yield decreased to 47%, while only 12%
of the desired product was isolated when the reaction was
performed under N2 atmosphere. Among the Pd(II) catalysts
tested, Pd(OAc)2 turned out to be the best, while no product
could be detected in the absence of Pd(II). Pd(0) was totally
ineffective for the reaction.
(8) (a) Lail, M.; Arrowood, B. N.; Gunnoe, T. B. J. Am. Chem. Soc.
2003, 125, 7506. (b) Chatani, N.; Asaumi, T.; Ikeda, T.; Yorimitsu, S.;
Ishii, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2000, 122, 12882. (c)
Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer,
P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M. J. Am. Chem. Soc.
2002, 124, 1586. (d) Kakiuchi, F.; Yamauchi, M.; Chatani, N.; Murai, S.
Chem. Lett. 1996, 2, 111. (e) Lenges, C. P.; Brookhart, M. J. Am. Chem.
Soc. 1999, 121, 6616. (f) Lim, Y. G.; Kim, Y. H.; Kang, J. B. J. Chem.
Soc., Chem. Commun. 1994, 2267. (g) Thalji, R. K.; Ahrendt, K. A.;
Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2001, 123, 9692. (h) Jun,
C. H.; Moon, C. W.; Hong, J. B.; Lim, S. G.; Chung, K. Y.; Kim, Y. H.
Chem.sEur. J. 2002, 8, 485. (i) Thalji, R. K.; Ellman, J. A.; Bergman,
R. G. J. Am. Chem. Soc. 2004, 126, 7192. (j) Mikami, K.; Hatano, M.;
Terada, M. Chem. Lett. 1999, 1, 55. (k) Jun, C.-H.; Hong, J.-B.; Kim, Y.-
H.; Chung, K.-Y. Angew. Chem., Int. Ed. 2000, 41, 3440. (l) Guari, Y.;
Sabo-Etienne, S.; Chaudret, B. J. Am. Chem. Soc. 1998, 120, 4228.
(9) Chatani, N.; Fukuyama, T.; Kakiuchi, F.; Murai, S. J. Am. Chem.
Soc. 1996, 118, 493.
(10) Orito, K.; Horibata, A.; Nakamura, T.; Ushito, H.; Nagasaki, H.;
Yuguchi, M.; Yamashita, S.; Tokuda, M. J. Am. Chem. Soc. 2004, 126,
14342.
(11) Yu, W.-Y.; Sit, W.; Lai, K.-M.; Zhou, Z.; Chan, A. S. C. J. Am.
Chem. Soc. 2008, 130, 3304.
(12) Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14082.
(13) Kochi, T.; Urano, S.; Seki, H.; Muzushima, E.; Sato, M.; Kakiuchi,
F. J. Am. Chem. Soc. 2009, 131, 2792.
From these preliminary explorations, the optimized condi-
tions for this sp2 C-H acylation were found as following:
Org. Lett., Vol. 11, No. 14, 2009
3121