pubs.acs.org/joc
containing natural products such as those belonging to the
Organocatalytic Highly Enantio- and
Diastereoselective Mannich Reaction of β-Ketoesters
with N-Boc-aldimines
alkaloid family.1,2 Enantioselective Mannich reactions are
efficient and powerful methods to prepare chiral β-amino
carbonyl derivatives.3 Tremendous efforts have been made
in the development of efficient chiral catalysts for enantio-
selective Mannich reactions with preformed enolates4 and
enolizable β-dicarbonyl and related compounds.5 Highly
enantioselective direct Mannich reactions with aldehydes
and ketones have also been accomplished with chiral metal
complexes and organocatalysts.6,7
Young Ku Kang and Dae Young Kim*
Department of Chemistry, Soonchunhyang University, Asan,
Chungnam 336-745, Korea
Recently, several groups presented catalytic asymmetric
Mannich reactions of β-ketoesters using organocatalysts to
circumvent the problems commonly associated with conven-
tional metal catalysis. For example, Terada et al. have
developed a new chiral phosphorodiamidic acid to catalyze
the addition of acetylacetates to imines in a highly enantio-
selective fashion.8 The Jørgensen and Ricci groups have
reported a highly enantio- and diastereoselective Mannich
reaction using β-ketoesters catalyzed by cinchona alkaloid-
derived catalysts.9 Also, Schaus et al. have used cinchonine
itself to catalyze the highly enantioselective addition of β-
ketoesters to imines.10 More recently, the Dixon, Takemoto,
and Deng groups have reported highly enantioselective
Mannich reactions of β-ketoesters, catalyzed by bifunctional
organocatalysts containing thiourea functionality.11 Bifunc-
tional organocatalysts possessing a combination of hydro-
gen-bonding donors and chiral tertiary amines have been
developed for activation of both electrophilic and nucleo-
philic components. They have emerged as powerful tools for
Received April 29, 2009
The catalytic enantioselective Mannich reaction pro-
moted by chiral bifunctional organocatalysts is described.
The treatment of β-ketoesters with N-Boc-aldimines
under mild reaction conditions afforded the correspond-
ing β-amino β-ketoesters with excellent diastereoselec-
tivities (up to 100:0 dr) and excellent enantioselectivities
(up to 99% ee).
(5) (a) Hamashima, Y.; Sasamoto, N.; Umebayashi, N.; Sodeoka, M.
Chem. Asian J. 2008, 3, 1443. (b) Chen, Z.; Morimoto, H.; Matsunaga, S.;
Shibasaki, M. J. Am. Chem. Soc. 2008, 130, 2170. (c) Kobayashi, S.;
Gustafsson, T.; Shimizu, Y.; Kiyohara, H.; Matsubara, R. Org. Lett. 2006,
8, 4923. (d) Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei, H.; Umebaya-
shi, N.; Sodeoka, M. Angew. Chem., Int. Ed. 2005, 44, 1525.
(6) Selected examples of metal-catalyzed Mannich-type reactions of
aldehydes and ketones, see: (a) Cutting, G. A.; Stainforth, N. E.; John, M.
P.; Kociok-Kohn, G.; Willis, M. C. J. Am. Chem. Soc. 2007, 129, 10632.
(b) Morimoto, H.; Lu, G.; Aoyama, N.; Matsunaga, S.; Shibasaki, M. J.
Am. Chem. Soc. 2007, 129, 9588. (c) Trost, B. M.; Jaratjaroonphong, J.;
Reutrakul, V. J. Am. Chem. Soc. 2006, 128, 2778. (b) Harada, S.; Handa, S.;
Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2005, 44, 4365.
(c) Okada, A.; Shibuguchi, T.; Ohshima, T.; Masu, H.; Yamaguchi, K.;
Shibasaki, M. Angew. Chem., Int. Ed. 2005, 44, 4564.
Optically active β-amino acids are fundamental building
blocks for the preparation of pharmaceutical and agrochemi-
cal target molecules. In addition, these compounds are useful
chiral starting materials in the synthesis of bioactive amine
(1) For reviews on the synthesis of β-amino acids: (a) Juaristi, E.
Soloshonok, V. A. Enantioselective Synthesis of β-Amino Acids; Wiley:
New York, 2005. (b) Ma, J. Angew. Chem., Int. Ed. 2003, 42, 4290. (c) Liu,
M.; Sibi, M. P. Tetrahedron 2002, 58, 7991. (d) Magriotis, P. A. Angew. Chem.,
Int. Ed. 2001, 40, 4377.
(2) For recent syntheses of β-amino acids, see: (a) Berkessel, A.;
Cleemann, F.; Mukherjee, S. Angew. Chem., Int. Ed. 2005, 44, 2. (b) Hsiao,
Y.; Rivera, N. R.; Rosner, T.; Krska, S. W.; Njolito, E.; Wang, F.; Sun, Y.;
Armstrong, J. D.; Grabowski, E. J.; Tillyer, R. D.; Spindler, F.; Malan, C.
J. Am. Chem. Soc. 2004, 126, 9918. (c) Zhou, Y.; Tang, W.; Wang, W.; Li, W.;
Zhang, X. J. Am. Chem. Soc. 2002, 124, 4952. (d) Sibi, M. P.; Asano, Y.
J. Am. Chem. Soc. 2001, 123, 9708. (e) Myers, J.; Jacobsen, E. N. J. Am.
Chem. Soc. 1999, 121, 8959.
(3) For selected recent reviews, see: (a) Verkade, J. M. M.; van Hemert,
L. J. C.; Quaedflieg, P. J. L. M.; Rutjes, F. P. J. T. Chem. Soc. Rev. 2008, 37,
29. (b) Ting, A.; Schaus, S. E. Eur. J. Org. Chem. 2007, 5797. (c) Marques, M.
M. B. Angew. Chem., Int. Ed. 2006, 45, 348. (d) Cordova, A. Acc. Chem. Res.
2004, 37, 102.
(4) For selected examples of Mannich-type reactions of enolates, see: (a)
Sikert, M.; Schneider, C. Angew. Chem., Int. Ed. 2008, 47, 3631. (b) Itoh, J.;
Fuchibe, K.; Akiyama, T. Synthesis 2008, 1319. (c) Kobayashi, S.; Yazaki,
R.; Seki, K.; Ueno, M. Tetrahedron 2007, 63, 8425. (d) Saruhashi, K.;
Kobayashi, S. J. Am. Chem. Soc. 2006, 128, 11232. (e) Kobayashi, S.; Ueno,
M.; Saito, S.; Mizuki, Y.; Ishitani, H.; Yamashita, Y. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 5476. (f) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K.
Angew. Chem., Int. Ed. 2004, 43, 1566. (g) Wenzel, A. G.; Jacobsen, E. N.
J. Am. Chem. Soc. 2002, 124, 12964.
(7) For selected examples of direct organocatalytic Mannich-type reac-
tions, see: (a) Yang, J. W.; Chandler, C.; Stadler, M.; Kampen, D.; List, B.
Nature 2008, 452, 453. (b) Zhang, H.; Mitsumori, S.; Utsumi, N.; Imai, M.;
Garcia-Delgado, N.; Mifsud, M.; Albertshofer, K.; Cheong, P. H.-Y.; Houk,
K. N.; Tanaka, F.; Barbas, C. F. III. J. Am. Chem. Soc. 2008, 130, 875.
(c) Vesely, J.; Rios, R.; Ibrahem, I.; Cordova, A. Tetrahedron Lett. 2007, 48,
421. (d) Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2007, 129, 10054.
(e) Kano, T.; Yamaguchi, Y.; Tokuda, O.; Maruoka, K. J. Am. Chem. Soc.
2005, 127, 16408. (f) Enders, D.; Grondal, C.; Vrettou, M.; Raabe, G. Angew.
Chem., Int. Ed. 2005, 44, 4079.
(8) Terada, M.; Sorimachi, K.; Uraguchi, D. Synlett 2006, 133.
(9) (a) Marianacci, O.; Micheletti, G.; Bernardi, L.; Fini, F.; Fochi, M.;
Pettersen, D.; Sgarzani, V.; Ricci, A. Chem.;Eur. J. 2007, 13, 8338.
(b) Poulsen, T. B.; Alemparte, C.; Saaby, S.; Bella, M.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2005, 44, 2896.
(10) (a) Goss, J. M.; Schaus, S. E. J. Org. Chem. 2008, 73, 7651. (b) Lou,
S.; Dai, P.; Schaus, S. E. J. Org. Chem. 2007, 72, 9998. (c) Ting, A.; Lou, S.;
Schaus, S. E. Org. Lett. 2006, 8, 2003. (d) Lou, S.; Taoka, B. M.; Ting, A.;
Schaus, S. E. J. Am. Chem. Soc. 2005, 127, 11256.
(11) (a) Tillman, A. L.; Ye, J.; Dixon, D. J. Chem. Commun. 2006, 1191.
(b) Yamaoka, Y.; Miyabe, H.; Yasui, Y.; Takemoto, Y. Synthesis 2007, 2571.
(c) Song, J.; Wang, Y.; Deng, L. J. Am. Chem. Soc. 2006, 128, 6048.
5734 J. Org. Chem. 2009, 74, 5734–5737
Published on Web 06/25/2009
DOI: 10.1021/jo900880t
r
2009 American Chemical Society