M. Yamaoka et al. / Tetrahedron Letters 50 (2009) 3849–3852
3851
to the quaternary nature of the adjacent carbon. Deprotection of
the benzyl group in 23b with LiAlH4, followed by oxidation of
the resulting diol with Dess–Martin periodinane provided ketoal-
dehyde 24 in 43% yield for two steps. The ketoaldehyde 24 was
then oxidized to carboxylic acid 25 with NaClO2. Finally, deprotec-
tion of two TBS ethers with concentrated HCl completed the syn-
thesis of the AB ring moiety (5).
In summary, we have demonstrated the synthesis of the fully
functionalized AB ring moiety of fomitellic acids. The stereoselec-
tive construction of the tricyclic core was achieved by tita-
nium(III)-mediated radical cascade cyclization of epoxypolyene,
and the stereochemistry at C1 and C3 was controlled by vinylogous
Mukaiyama aldol reaction and Sharpless asymmetric epoxidation,
respectively. The present strategy would be applicable to the total
synthesis of fomitellic acids using a suitable vinyl iodide part
instead of vinyl iodide 9. Preparation of the vinyl iodide part and
further studies toward the total synthesis of fomitellic acid B (2)
are in progress.
Figure 2. ORTEP drawing of cyclization product 21.
the cyclization. We also attempted the cyclization of epoxypolyene
possessing a silyloxy (TBSO) group instead of an acetoxy group to
result in the formation of a complex mixture of products.
The stereochemistry of 21 was unambiguously confirmed by
X-ray crystallographic analysis (Fig. 2).20 The cyclization product
21 was found to possess the desired stereochemistry and to be
formed via a trans-fused chair/chair-like transition state.
Transformation of 21 to the AB ring moiety (5) is illustrated in
Scheme 5. Protection of the secondary alcohol in 21 as the TBS
ether and subsequent epoxidation with mCPBA provided epoxide
22 in 97% yield for the two steps as an almost single isomer. Treat-
ment of 22 with TMSOTf and 2,6-lutidine,21 followed by removal of
the TMS group of the resulting allyl silyl ethers with TBAF afforded
allylic alcohols 23a11 and 23b in 35% and 38% yield, respectively
(separable by silica gel column chromatography). No regioselectiv-
ity was observed in this model reaction, although no attempt was
made to improve the selectivity. For total synthesis of fomitellic
acids, epoxide opening should proceed in the desired fashion due
Acknowledgments
This research was supported in part by a Grant-in-Aid for Scien-
tific Research (B) (KAKENHI No.18390010) from the Japan Society
for the Promotion of Science. We thank Professor Kazuo Miyamura
and Dr. Kazuaki Tomono (Department of Chemistry, Faculty of
Science, Tokyo University of Science) for the X-ray analysis.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Tanaka, N.; Kitamura, A.; Mizushina, Y.; Sugawara, F.; Sakaguchi, K. J. Nat. Prod.
1998, 61, 193–197.
2. (a) Mizushina, Y.; Tanaka, N.; Kitamura, A.; Tamai, K.; Ikeda, M.; Takemura, M.;
Sugawara, F.; Arai, T.; Matsukage, A.; Yoshida, S.; Sakaguchi, K. Biochem. J. 1998,
330, 1325–1332; (b) Mizushina, Y.; Iida, A.; Ohta, K.; Sugawara, F.; Sakaguchi, K.
Biochem. J. 2000, 350, 757–763; (c) Obara, Y.; Nakahata, N.; Mizushina, Y.;
Sugawara, F.; Sakaguchi, K.; Ohizumi, Y. Life Sci. 2000, 67, 1659–1665.
3. (a) Sakaguchi, K.; Sugawara, F. Curr. Top. Med. Chem. 2003, 3, 1–33; (b)
Sakaguchi, K.; Sugawara, F. Curr. Drug Ther. 2008, 3, 44–53.
4. (a) Pettersson, L.; Frejd, T. J. Chem. Soc., Perkin Trans. 1 2001, 789–800; (b)
Pettersson, L.; Frejd, T.; Magnusson, G. Tetrahedron Lett. 1987, 28, 2753–
2756.
5. (a) Barrero, A. F.; Cuerva, J. M.; Herrador, M. M.; Valdivia, M. V. J. Org. Chem.
2001, 66, 4074–4078; (b) Barrero, A. F.; Quílez del Moral, J. F.; Herrador, M. M.;
Loayza, I.; Sánchez, E. M.; Arteaga, J. F. Tetrahedron 2006, 62, 5215–5222; (c)
Fernández-Mateos, A.; Teijón, P. H.; Clemente, R. R.; González, R. R.; González,
F. S. Synlett 2007, 2718–2722; For reviews see: (d) Barrero, A. F.; Quílez del
Moral, J. F.; Sánchez, E. M.; Arteaga, J. F. Eur. J. Org. Chem. 2006, 1627–1641; (e)
Cuerva, J. M.; Justicia, J.; Oller-López, J. L.; Bazdi, B.; Oltra, J. E. Mini-Rev. Org.
Chem. 2006, 3, 23–35; (f) Cuerva, J. M.; Justicia, J.; Oller-López, J. L.; Oltra, J. E.
Top. Curr. Chem. 2006, 264, 63–91; (g) Gansäuer, A.; Justicia, J.; Fan, C.-A.;
Worgull, D.; Piestert, F. Top. Curr. Chem. 2007, 279, 25–52.
1) TBSOTf
DIPEA
1) TMSOTf
2,6-lutidine
TBSO
TBSO
CH2Cl2, 0 o
C
toluene, −78 oC to rt
H
O
H
2) mCPBA
CH2Cl2, 0 o
TBSO
2) TBAF, THF, rt
HO
H
H
C
OBn
22
OBn
21
97% (2 steps)
TBSO
TBSO
H
+
TBSO
OH
TBSO
OH
H
H
OBn
OBn
23b (38%)
23a (35%)
6. (a) Yamada, H.; Hasegawa, T.; Tanaka, H.; Takahashi, T. Synlett 2001, 1935–
1937; (b) Justicia, J.; Oltra, J. E.; Cuerva, J. M. Tetrahedron Lett. 2004, 45, 4293–
4296; (c) Justicia, J.; Rosales, A.; Buñuel, E.; Oller-López, J. L.; Valdivia, M.; Ha,
A.; Oltra, J. E.; Barrero, A. F.; Cárdenas, D. J.; Cuerva, J. M. Chem. Eur. J. 2004, 10,
1778–1788; (d) Justicia, J.; Oller-López, J. L.; Campaña, A. G.; Oltra, J. E.; Cuerva,
J. M.; Buñuel, E.; Cárdenas, D. J. J. Am. Chem. Soc. 2005, 127, 14911–14921; (e)
Barrero, A. F.; Herrador, M. M.; Quílez del Moral, J. F.; Arteaga, P.; Arteaga, J. F.;
Piedra, M.; Sánchez, E. M. Org. Lett. 2005, 7, 2301–2304; (f) Justicia, J.; Oltra, J.
E.; Barrero, A. F.; Guadaño, A.; González-Coloma, A.; Cuerva, J. M. Eur. J. Org.
Chem. 2005, 712–718; (g) Justicia, J.; Oltra, J. E.; Cuerva, J. M. J. Org. Chem. 2005,
70, 8265–8272; (h) Gansäuer, A.; Justicia, J.; Rosales, A.; Worgull, D.; Rinker, B.;
Cuerva, J. M.; Oltra, J. E. Eur. J. Org. Chem. 2006, 4115–4127; (i) Gansäuer, A.;
Rosales, A.; Justicia, J. Synlett 2006, 927–929; (j) Gansäuer, A.; Worgull, D.;
Justicia, J. Synthesis 2006, 2151–2154; (k) Justicia, J.; Campaña, A. G.; Bazdi, B.;
Robles, R.; Cuerva, J. M.; Oltra, J. E. Adv. Synth. Catal. 2008, 350, 571–576.
7. Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J.
Am. Chem. Soc. 1987, 109, 5765–5780.
NaClO2, NaH2PO4
2-methyl-2-butene
TBSO
1) LAH, THF, rt
23b
t-BuOH/H2O
rt
2) DMP, CH 2Cl2
0 oC to rt
TBSO
OHC
O
H
43% (2 steps)
90%
24
OH
TBSO
HCl
THF/MeOH
rt
HO
HO2C
O
TBSO
HO2C
O
H
H
5
25
87%
8. Shirokawa, S.-i.; Kamiyama, M.; Nakamura, T.; Okada, M.; Nakazaki, A.;
Hosokawa, S.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 13604–13605.
Scheme 5. Synthesis of the AB ring moiety (5).