SiMe3
H
O
Me3Si
MeO
MeO
CpCo
O
O
O
O O
HO
O
•
i, ii
+
O
O
2
O
OMe
MeO
MeO
MeO
5
O
O
iv–vi
i, ii
MeO
OMe
OMe
SiMe3
10
9
O
H+
MeO
MeO
OH
O
Me3Si
X
Y
O
O
6
OMe
Yield
10
7
Conditions
9
O
MeO
MeO
vii
iii
i
ii
57 5–10
37 19
O
4
3
OMe
viii
11 X = Y = SiMe3
12 X = SiMe3, Y = H
13 X = Y = H
Z
Z
O
O
Scheme 3 Reagents and conditions: i, Me3SiC·CSiMe3, CpCo(CO)2,
50–65 °C, reflux, hn, addition of 2 in THF over 9 h; ii, Me3SiC·CSiMe3,
MeCN, reflux, hn, addition of 2 in THF over 9 h.
O
MeO
MeO
O
acknowledge his personal debt of gratitude to the late Professor
R. A. Raphael FRS, whose mastery of the Art of Organic
Synthesis was matched only by his ability to encourage and to
instil his love and enthusiasm for the subject in others.
OMe
8 Z = SiMe3
2 Z = H
ix
Notes and references
1 S. M. Kupchan, R. W. Britton, M. F. Ziegler, C. J. Gilmore, R. J. Restivo
and R. Bryan, J. Am. Chem. Soc., 1973, 95, 1335
2 R. W. J. Wang, L. I. Rebbun and M. S. Kupchan, Cancer Res., 1977, 37,
3071.
Scheme 2 Reagents and conditions: i, (COCl)2, CH2Cl2, DMF (cat), room
temp., 1 h; ii, Me3SiC·CSnMe3, Pd(PPh3)2Cl2, ClCH2CH2Cl, 50 °C, 16 h,
67% over 2 steps; iii, HOCH2CH2OH, PhH, PPTS (cat), reflux, 12 h, 87%;
iv, I2, AgO2CCF3, CH2Cl2, 20 °C, 12 h, quant.; v, NaBH4, MeOH, 25 °C,
30 min, quant.; vi, Me3SiC·CH, Pd(PPh3)2Cl2, CuI, Et2NH, 50 °C, 2 h,
92%; vii, CBr4, PPh3, Et2O, 24 h, 92%; viii, 4, LDA, THF, 278 °C, 1 h, then
add 3, 235 °C, 1 h, 80%; ix, K2CO3, MeOH, 20 °C, 15 h, 95%.
3 N. S. Narasimhan and I. R. Aiden, Tetrahedron Lett., 1988, 29, 2987;
N. S. Narasimhan and I. R. Aiden, Indian J. Chem., Sect. B., 1993, 32B,
211; A. I. Meyers, J. R. Flisak and R. A. Aitken, J. Am. Chem. Soc.,
1987, 109, 5446; P. Magnus, J. Schultz and T. Gallagher, J. Am. Chem.
Soc., 1985, 107, 4984; R. Dhal, J. P. Robin and E. Brown, Tetrahedron
1983, 39, 2787; M. Mervic, Y. Ben-David and E. Ghera, Tetrahedron
Lett., 1981, 22, 5091; F. E. Ziegler, I. C. Chliwner, K. W. Fowler, S. J.
Kanfer, S. J. Kuo and N. D. Sinha, J. Am. Chem. Soc., 1980, 102, 790;
E. Brown, R. Dhal and J. P. Robin, Tetrahedron Lett., 1979, 733; E. R.
Larson and R. A. Raphael, Tetrahedron Lett., 1979, 5041; G. R. Krow,
K. M. Damadoran, E. Michener, R. Wolf and J. Gaure, J. Org. Chem.,
1978, 43, 3950; D. Becker, L. R. Hughes and R. A. Raphael, J. Chem.
Soc., Perkin Trans. 1, 1977, 1674; L. R. Hughes and R. A. Raphael,
Tetrahedron Lett., 1976, 1543; A. S. Kende and L. S. Liebskind, J. Am.
Chem. Soc., 1976, 98, 267; M. Uemura, A. Daimon and Y. Hayashi,
J. Chem. Soc., Chem. Commun., 1995, 1943.
SiC·CSiMe3, further variation in experimental conditions gave
the desired biaryl 9 possessing the carbocyclic steganone core in
20% yield.
The structure of the indicated atropisomer of the biaryl 9,
which corresponds to the natural series, was established both by
NOE experiments and also by deprotection of the ketal using
wet formic acid which furnished the parent ketone 11 (nmax
1674 cm21) in 54% yield (Scheme 3). Deprotection accom-
panied by selective mono- or di-protodesilylation could also be
achieved in a single step by treatment of 9 with TFA either at
room temperature or at reflux to afford the further steganone
analogues 12 and 13 in 73 and 51% yield, respectively.
In summary, these preliminary results demonstrate the
viability of using a tethered deca-1,9-diyne in a cobalt-mediated
[2+2+2] cyclobenzannulation strategy for the construction of
steganone analogues in a highly convergent manner. Within this
framework, current studies are directed towards the use of
further 2p addends and additional metal-based cyclotrimerisa-
tion reactions both for aromatic and heteroaromatic rings in
order to further enhance the flexibility of this approach.
We thank the EPSRC and Zeneca Agrochemicals for the
award of a CASE studentship to F. U., and University College
London for the provision of a Provosts’ studentship to A. B. We
are also indebted to Professor D. Williams and Dr A. M. Z.
Slawin for X-ray structural determination and the University of
London Intercollegiate Research School (ULIRS) for mass
spectral measurements. Finally, one of us (W. B. M.) wishes to
4 D. Becker, L. R. Hughes and R. A. Raphael, J. Chem. Soc., Chem.
Commun., 1974, 430.
5 K. P. C.Vollhardt, Angew. Chem., Int. Ed. Engl., 1984, 28, 539.
6 J. F. Tocanne and C. Asselineau, Bull. Chem. Soc. Fr., 1965, 3346.
7 M. E. Garst and B. J. McBride, J. Org. Chem., 1989, 54, 249.
8 F. Ujjainwalla, PhD thesis, University of London, 1993. We are grateful
to Drs D. Williams and A. M. Z. Slawin for the crystal structure
determination, which will be discussed in the full paper.
9 R. Gleiter, D. Kratz, M. L. Ziegler and B. Nuber, Tetrahedron Lett.,
1990, 31, 6175; C.-A. Chang, J. A. King Jr. and K. P. C. Vollhardt,
J. Chem. Soc., Chem. Commun., 1981, 53; C.-A. Chang, C. G.
Francisco, T. R. Gadek, J. A. King Jr., E. D. Sternberg and K. P. C.
Vollhardt, in Organic Synthesis Today and Tomorrow, ed. B. M. Trost
and C. R. Hutchinson, Pergamon, New York, 1981, 71; P. Phanasavath,
C. Aubert and M. Malacria, Tetrahedron Lett., 1998, 39, 1561.
Communication 9/00743A
918
Chem. Commun., 1999, 917–918