T.S. Lobana et al. / Polyhedron 28 (2009) 1583–1593
1593
The sulfur-bridged silver(I) dimer 8 shows intramolecular
Acknowledgements
hydrogen bonding between imino hydrogen and chlorine atoms
(–N2HꢀꢀꢀCl). The dimer units are further linked to each other by
intermolecular OHꢀꢀꢀCl and ClꢀꢀꢀHPh hydrogen bonding, resulting
in a linear polymeric 1D chain (Fig. 11).
The packing diagram of complex 9 reveals the presence of intra-
molecular –N2HꢀꢀꢀBr hydrogen bonding. Two monomer molecules
are interlinked via –HOꢀꢀꢀBr hydrogens generating a 20 membered
cavity. The hydrogen atoms of methyl group at N1 atom exhibit
Financial assistance (SK) from CSIR (F. No. 9/254(159)/2005-
EMR-I), New Delhi, is gratefully acknowledged. The authors thank
Matthias Zeller of Youngstown State University, USA, for X-ray
crystallography.
References
[1] B.K. Saha, R.K.R. Jetti, L.S. Reddy, S. Aitipamula, A. Nangia, Cryst. Growth Des. 5
(2005) 887.
[2] (a) B. Moulton, M.J. Zaworotko, Chem. Rev. 101 (2001) 1629;
(b) M. Oh, C.A. Mirkin, Nature 438 (2005) 651.
intermolecular interactions with phenyl ring of PPh3 (–CHꢀꢀꢀ
p,
2.857 Å) and H2stscNMe ligand (–CHꢀꢀꢀ
p
, 2.761 Å) resulting in
2D network. Acetonitrile molecules are present in the cavity and
[3] B. Sarma, S. Roy, A. Nangia, Chem. Commun. (2006) 1369.
[4] C. Zhang, E. Staunton, Y.G. Andreev, P.G. Bruce, J. Am. Chem. Soc. 127 (2005)
18305.
[5] T. Okubo, R. Kawajiri, T. Mitani, T. Shimoda, J. Am. Chem. Soc. 127 (2005)
17589.
[6] X.-Y. Wang, L. Wang, Z.-M. Wang, S. Gao, J. Am. Chem. Soc. 128 (2006) 674.
[7] A. Nangia, Curr. Opin. Solid State Matter Sci. 5 (2001) 115.
[8] J.A. McMohan, B. Moulton, R.D.B. Walsch, N. Rodriguez-Hornedo, M.J.
Zaworotko, Cryst. Growth Des. 3 (2003) 909.
are engaged in intermolecular hydrogen bonding with phenyl
ring (–CHꢀꢀꢀ
p, 2.885 Å, PPh3) and amino hydrogen atom (–CH3-
N1HꢀꢀꢀNCCH3, 2.595 Å) (Fig. 12). Compound 10 shows similar
interactions.
5. Solution phase behavior
[9] M. Zaworotko, Angrew. Chem., Int. Ed. 39 (2000) 3052.
[10] R.D.B. Walsch, M.W. Bradner, S. Fleischman, L.A. Morales, B. Moulton, N.
Rodriguez-Hornedo, M. Zaworotko, Chem. Commun. (2003) 186.
[11] M.J.M. Campbell, Coord. Chem. Rev. 15 (1975) 279.
[12] S.B. Padhye, G. Kauffman, Coord. Chem. Rev. 63 (1985) 127.
[13] D.X. West, S.B. Padhye, P.B. Sonawane, Struct. Bond. (Berlin Ger.) 76 (1991) 4.
[14] D.X. West, A.E. Liberta, S.B. Padhye, R.C. Chikate, P.B. Sonawane, A.S. Kumbhar,
R.G. Yerande, Coord. Chem. Rev. 123 (1993) 49.
It may be significant to understand the solution phase behavior
of complexes 1–10 using 1H and 31P NMR spectroscopy. While 1H
NMR spectra of complexes reveal the presence of diagnostic –
N2H, –N1H2, –OH and phenyl ring protons of thiosemicarbazone
and PPh3, the 31P NMR spectra reveal information about the state
of the species in solution phase. The 31P NMR spectra of 1, 2 and
7 have revealed the presence of 2a, 1b isomers and both 7a and
7b isomers. It shows, depending on the medium (CDCl3 for NMR
and CH3CN–CHCl3 for crystal growth), the nature of dimeric specie
can be different. For copper(I), 2b converting to 2a and 1a convert-
ing to 1b, but for silver(I), both 7a and 7b were present in the solu-
tion in CDCl3. Similarly complex 8 reveals conversion of sulfur
bridging into chloro-bridging. Complexes 3 and 6 remained un-
changed in the solution phase. Sulfur-bridged dimers 4 and 5
showed a single signal each, with coordination shifts similar to
the literature values [29].
[15] J.S. Casas, M.S. Garcia-Tasende, J. Sordo, Coord. Chem. Rev. 209 (2000) 197.
[16] D.R. Smith, Coord. Chem. Rev. 164 (1997) 575.
[17] T.S. Lobana, S. Khanna, R. Sharma, G. Hundal, R. Sultana, M. Chaudhary, R.J.
Butcher, A. Castineiras, Cryst. Growth Des. 8 (2008) 1203.
[18] R.K. Mahajan, I. Kaur, T.S. Lobana, Talanta 59 (2003) 101.
[19] R.K. Mahajan, I. Kaur, T.S. Lobana, Ind. J. Chem. 45A (2006) 639.
[20] R.K. Mahajan, T.P.S. Walia, Sumanjit, T.S. Lobana, Talanta 67 (2005) 755.
[21] L.S. Sarma, J.R. Kumar, C.J. Kumar, A.V. Reddy, Anal. Lett. 36 (2003) 605.
[22] K.J. Reddy, J.R. Kumar, C. Ramachandraiah, T. Thriveni, A.V. Reddy, Food Chem.
101 (2007) 585.
[23] M.A. Ali, M.E. Khalifa, S.E. Ghazy, M.M. Hassanien, Anal. Sci. 18 (2002)
1235.
[24] U. Abram, K. Ortner, R. Gust, K. Sommer, J. Chem. Soc., Dalton Trans. (2000)
735.
[25] K. Nomiya, K. Sekino, M. Ishiawa, A. Honda, M. Yokoyama, N.C. Kasuga, H.
Yokoyama, S. Nakano, K. Onodera, J. Inorg. Biochem. 98 (2004) 601.
[26] M.B. Ferrari, F. Bisceglie, G. Pelosi, P. Tarasconi, R. Albertini, A. Bonati, P.
Lunghi, S. Pinelli, J. Inorg. Biochem. 83 (2001) 169.
[27] D.X. West, J.S. Ives, J. Krejci, M.M. Salberg, T.L. Zumbahlen, G.A. Bain, A.E.
Liberta, J. Valdes-Martinez, S. Hernadez-Ortiz, R.A. Toscano, Polyhedron 14
(1995) 2189.
[28] J. Garcia-Tojal, L. Lezama, J.L. Pizarro, M. Insausti, M.I. Arriortua, T. Rojo,
Polyhedron 18 (1999) 3703.
[29] T.S. Lobana, R.J. Butcher, A. Castineiras, E. Bermejo, P.V. Bharatam, Inorg. Chem.
45 (2006) 1535.
[30] T.S. Lobana, A.P.S. Pannu, G. Hundal, R.J. Butcher, A. Castineiras, Polyhedron 26
(2007) 2621.
[31] W. Kaim, J. Rall, Angew. Chem., Int. Ed. Engl. 35 (1996) 43.
[32] R.J. Haines, R.E. Wittrig, C.P. Kubiak, Inorg. Chem. 33 (1994) 4723.
[33] J. Anekwe, A. Hammerschmidt, A. Rompal, B. Krebs, Z. Anorg. Allg. Chem. 632
(2006) 1057.
6. Conclusion
The presence of 2-hydroxyphenyl (R1) substituent at C2 carbon
(H2stsc, R1 = 2-HO–C6H4, R2 = R3 = H) appears to be responsible for
the bond isomerism (
The introduction of methyl substituent at N1 atom (H2stscNMe)
has led to the formation of only –S bridged dimers (4, 5). Both
H2stsc and H2stscNMe with copper(I) chloride form mononuclear
complexes, 3 and 6. Silver(I) bromide with H2stsc formed 7 which
again showed bond isomerism. Finally, silver(I) chloride with
H2stsc and silver(I) bromide/chloride with H2stscNMe have formed
l-X, l-S bridging) as exhibited by 1 and 2.
l
l-S bridged dimer (8, H2stsc) or tetrahedral monomers (9, 10,
H2stscMe). Lack of bond isomerism in 8 may be attributed to the
presence of strong intermolecular OHꢀꢀꢀCl hydrogen bonds which
has served to stabilize sulfur bridging. The weak imino hydro-
gen–halogen hydrogen bonds in 1, 2 and 7 appear to provide the
necessary impetus for crossover of small energy barrier between
[34] E.I. Solomon, U.M. Sundaram, T.E. Machonkin, Chem. Rev. 96 (1996) 2563.
[35] K. Singh, J.R. Long, P. Stavropoulos, Inorg. Chem. 37 (1998) 1073.
[36] H. Araki, K. Tsuga, Y. Sasaki, S. Ishizaka, N. Kitamura, Inorg. Chem. 46 (2007)
10032.
[37] H.V.R. Dias, H.V.K. Diyabalanage, M.G. Eldabaga, O. Elbjeirama, MA.
Rawashdeh-Omary, J. Am. Chem. Soc. 127 (2005) 7489.
[38] A.A. Mohamed, A. Burini, J.P. Fackler Jr., J. Am. Chem. Soc. 127 (2005)
5012.
l-X and l-S bridged complexes, leading to the bond isomerism.
[39] G. Brauer, Handbook of Preparative Chemistry, 2nd Ed., vol. 2, Academic Press,
New York, 1965.
Supplementary data
[40] XSCANS, Siemens Analytical X-ray Instruments Inc., Madison, WI, USA, 1994.
[41] International Tables for X-ray Crystallography, vol. C, Kluwer, Dordrecht, The
Netherlands, 1995.
[42] G.X. Win, L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
[43] G.M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area
Detector Data, University of Gottingen, Germany, 1997.
CCDC 683519, 683520, 683521, 713437, 713438, 713439,
683846, 683847, 713440 and 713441 contain the supplementary
crystallographic data for 3, 2, 1, 6, 5, 4, 8, 7, 9 and 10, respectively.
graphic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK;
fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
[44] Bruker, SMART, SAINT and XREP, Area Detector Control, and Data Integration and
Reduction Software, Bruker Analytical X-ray Instruments Inc., Madison,
Wisconsin, USA, 1995.
[45] G.M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures,
University of Gottingen, Germany, 1997.