Page 7 of 10
Organic & Biomolecular Chemistry
Please do not adjust margins
Journal Name
ARTICLE
Figure 5 Calculated reaction coordinates for C-H and C-C bond-cleavage observed in the
reaction of 1 with ethanolamine (2e). Energy values denoted in blue correspond to free
energy values expressed in kcal/mol a) Reaction coordinate for Path A; b) reaction
coordinate for Path B; c) Optimized geometries for transitions states for C-H (TS-CH)
and C-C (TS-CC) bond-cleavage.
Connecticut) for providing SPME cartridges and help us with
HPLC-UV analysis. In addition, we thank Drs. Anthony Provatas
and Adam Graichen (University of Connecticut) for guidance
regarding in chromatography analytical techniques.
DOI: 10.1039/D0OB01797C
which we generally operated. This led us to believe that the
majority of the formaldehyde formed may be undergoing a
Cannizzaro reaction (Scheme 4).28,33,34 The lack of α-H atoms in
Notes and references
formaldehyde makes it susceptible to
a base-catalysed
1
2
3
4
5
6
7
8
9
G. G. Allan, C. S. Chopra and T. Mattila, Pestic. Sci., 1972, 3,
153.
D. Li, P. Wu, N. Sun, Y.-J. Lu, W.-L. Wong, Z. Fang and K.
Zhang, Curr. Org. Chem., 2019, 23, 616.
G. F. dos Santos Fernandes, A. R. Pavan and J. L. dos
Santos, Curr. Pharm. Des., 2018, 24, 1325.
F. Politano, E. I. Buján and N. E. Leadbeater, Chem.
Heterocycl. Compd., 2016, 52, 952.
F. Politano, A. K. Gran-Magano and N. E. Leadbeater,
Molecules, 2019, 24, 3639.
E. I. Buján de Vargas and A. I. Cañas, Tetrahedron Lett.,
1996, 37, 767.
E. I. Buján and M. L. Salum, J. Phys. Org. Chem., 2006, 19,
187.
M. L. Salum, R. H. de Rossi and E. I. Buján, European J. Org.
Chem., 2007, 2007, 2164.
P. A. Collins Cafiero, C. S. French, M. D. McFarlane, R. K.
Mackie and D. M. Smith, J. Chem. Soc. Perkin Trans. 1,
1997, 1375.
disproportionation reaction to generate the formate ion and
methanol. Comparison of 1H-NMR spectra of the crude
product mixture from the reaction of 1 with 2e and a
reference reaction between formaldehyde and potassium
carbonate under the same heating protocol allowed us to
confirm this hypothesis; the formate ion being observed in
both cases. This adds further credence to our proposed
pathway for the reaction.
O
OH
O
-OH
2
H
H
H
H
H
O
Scheme 4 Disproportionation of formaldehyde in basic media (Cannizzaro reaction)
producing the formate anion and methanol.
Conclusions
10
11
12
E. I. Buján, A. I. Cañas and R. H. de Rossi, J. Chem. Soc.
Perkin Trans. 2, 2001, 1973.
P. A. Nikitina and V. P. Perevalov, Chem. Heterocycl.
Compd., 2017, 53, 123.
In summary, we have performed experimental and
computational studies in order to investigate an unusual
carbon-carbon bond cleavage that occurs in the preparation of
certain benzimidazole N-oxides from anilines. Our
computational model shows good correlation to the results
obtained from our experimental observations; C-H, C-C, or a
combination of both bond-cleavages are predicted and
observed. A key factor determining the outcome of the
reaction was found to be the substituents on the amine
functionality of the aniline. More specifically, the presence of a
heteroatom in the β-position of the amine, and the ability to
eject a neutral molecule significantly influences whether C-C
bond-scission occurs The case of ethanolamine was
particularly interesting, both C-H and C-C bond-cleavage
pathways being observed and so this reaction was studied in
more detail both from a computational and experimental
perspective.
C. E. Dykstra, G. Frenkling, K. S. Kim and G. E. Scuseria,
Theory and applications of computational chemistry: the
first forty years, Elsevier, First Edit., 2005.
E. G. Lewars, Computational Chemistry, Springer
International Publishing, Cham, Third Edit., 2016.
J. Rehbein and B. K. Carpenter, Phys. Chem. Chem. Phys.,
2011, 13, 20906.
D. H. Ess, S. E. Wheeler, R. G. Iafe, L. Xu, N. Çelebi-Ölçüm
and K. N. Houk, Angew. Chemie - Int. Ed., 2008, 47, 7592.
S. R. Hare and D. J. Tantillo, Pure Appl. Chem., 2017, 89,
679.
13
14
15
16
17
18
S. Lee and J. M. Goodman, J. Am. Chem. Soc., 2020, 142,
9210.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.
A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A.
Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V Marenich, J.
Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P.
Hratchian, J. V Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D.
Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B.
Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G.
Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K.
Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M.
J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N.
Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
This research was funded in part by the University of
Connecticut Program in Accelerated Therapeutics for
Healthcare. A fellowship to F.P. by the Fulbright Program and
Ministerio de Educación de la Nación Argentina is gratefully
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins