R.-C. Liu et al. / Tetrahedron Letters 50 (2009) 4046–4049
4049
(+)-febrifugine 1 were identical with the reported data.5 Thus, an
efficient method for the synthesis of (+)-febrifugine was estab-
lished via high diastereoselective nucleophilic substitution reac-
tion of 3-silyloxy-2-acyloxypiperidine with silyl enol ether
(Scheme 7).
(g) Taniguchi, T.; Ogasawara, K. Org. Lett. 2000, 2, 3193; (h) Takeuchi, Y.;
Azuma, K.; Takakura, K.; Abe, H.; Kim, H. S.; Wataya, Y.; Harayama, T.
Tetrahedron 2001, 57, 1213; (i) Ooi, H.; Urushibara, A.; Esumi, T.; Iwabuchi, Y.;
Hatakeyama, S. Org. Lett. 2001, 3, 953; (j) Sugiura, M.; Kobayashi, S. Org. Lett.
2001, 3, 477; (k) Sugiura, M.; Hagio, H.; Hirabayashi, R.; Kobayashi, S. J. Org.
Chem. 2001, 66, 809; (l) Sugiura, M.; Hagio, H.; Hirabayashi, R.; Kobayashi, S. J.
Am. Chem. Soc 2001, 123, 12510; (m) Huang, P. Q.; Wei, B. G.; Ruan, Y. P. Synlett
2003, 1663; (n) Katoh, M.; Matsune, R.; Nagase, H.; Honda, T. Tetrahedron Lett.
2004, 45, 6221; (o) Ashoorzadeh, A.; Caprio, V. Synlett 2005, 346; (p) Takeuchi,
Y.; Oshige, M.; Azuma, K.; Abe, H.; Harayama, T. Chem. Pharm. Bull. 2005, 53,
868; (q) Bora, S.; Oscar, L. V.; Veronique, B.; Cossy, J. Synlett 2008, 1216; (r)
Sudhakar, N.; Srinivasulu, G.; Rao, G. S.; Rao, B. V. Tetrahedron: Asymmetry 2008,
19, 2153.
2. Conclusion
In summary, nucleophilic reactions of 3-silyloxy-2-acyloxypi-
peridine with silyl enol ethers in the presence of BF3ꢀEt2O as a cat-
alyst were demonstrated to give high cis-diastereoselectivity. The
structure was determined by comparing the two known com-
pounds 12 and 17. Using this method, a highly diastereoselective
approach for the asymmetric synthesis of the antimalarial alkaloid
(+)-febrifugine 1 was developed. In addition, a new route for the
6. Elkin, M.; Reich, R.; Nagler, A.; Aingorn, E.; Pines, M.; De Groot, N.; Hochberg,
A.; Vlodavsky, I. Clin. Cancer Res. 1999, 5, 1982.
7. (a) Plehiers, M.; Hootele, C. Can. J. Chem. 1996, 74, 2444; (b) Sugisaki, C. H.;
Carroll, P. J.; Correia, C. R. D. Tetrahedron Lett. 1998, 39, 3413; (c) Johnson, C. R.;
Golebiowski, A.; Sundram, H.; Miller, M. W.; Dwaihy, R. L. Tetrahedron Lett.
1995, 36, 653; (d) Botman, P. N. M.; Dommerholt, F. J.; Gelder, R. D.;
Broxterman, Q. B.; Schoemaker, H. E.; Rutjes, F. P. J. T.; Blaauw, R. H. Org. Lett.
2004, 6, 4941; (e) Wijdeven, M. A.; Botman, P. N. M.; Wijtmans, R.; Schoemaker,
H. E.; Rutjes, F. P. J. T.; Blaauw, R. H. Org. Lett. 2005, 7, 4005; (f) Adelbrecht, J -C.;
Craig, D.; Dymock, B. W.; Thorimbert, S. Synlett 2000, 467; (g) Chen, B.-F.; Tasi,
M.-R.; Yang, C.-Y.; Chang, J.-K.; Chang, N.-C. Tetrahedron 2004, 60, 10223.
8. Liu, R.-C.; Wei, J.-H.; Wei, B.-G.; Lin, G.-Q. Tetrahedron: Asymmetry 2008, 19,
2731.
synthesis of N,O-acetal 10 from the cheap L-glutamic acid deriva-
tives was also described.
Acknowledgments
9. Deechongkit, S.; You, S. L.; Kelly, J. W. Org. Lett. 2004, 6, 479.
The authors are grateful to the National Natural Science Foun-
dation of China (20832005, 20702007) and Fudan University for
financial support.
10. Huang, P.-Q.; Feng, C.-G.; Zheng, X. J. Heterocycl. Chem. 2007, 44, 499.
11. General procedure for the synthesis of 13a–h from 10: To a solution of 10
(1.40 mmol) and silyl enol ether (4.20 mmol) in dichloromethane (10 mL)
cooled to ꢁ78 °C under argon atmosphere, a solution of BF3ꢀEt2O (2.80 mmol)
was added dropwise. After being stirred for 3.5 h at the same temperature, the
reaction was quenched with a solution of NaHCO3 aqueous and warmed to
room temperature. The mixture was extracted with CH2Cl2 (15 mL ꢃ 3) and the
combined organic layers were dried over anhydrous Na2SO4. Filtered and
concentrated, the residue was purified by chromatography on silica gel to a
mixture of two diastereoisomers 13a–h. 13a (78%, >96%, HPLC) as a colorless
References and notes
1. For reviews on piperidine alkaloids, see: (a) Fodor, G. B.; Colasanti, B. The
Pyridine and Piperidine Alkaloids: Chemistry and Pharmacology. In Alkaloids:
Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Wiley-Interscience:
New York, 1985; Vol. 3, pp 1–90; (b) Schneider, M. J. Pyridine and Piperidine
Alkaloids: An Update. In Alkaloids: Chemical and Biological Perspectives;
Pelletier, S. W., Ed.; Pergamon: Oxford, 1996; Vol. 10, pp 155–299; (c)
Ciufolini, M. A.; Hermann, C. Y. W.; Dong, Q.; Shimizu, T.; Swaminathan, S.;
Xi, N. Synlett 1998, 105; (d) Zhou, W. S.; Lu, Z. H.; Xu, Y. M.; Liao, L. X.; Wang, Z.
M. Tetrahedron 1999, 55, 11959; (e) Laschat, S.; Dickner, T. Synthesis 2000,
1781; (f) Toyooka, N.; Nemoto, H. Drugs Future 2002, 27, 143; (g) Weintraub, P.
M.; Sabol, J. S.; Kane, J. M.; Borcherding, D. R. Tetrahedron 2003, 59, 2953; (h)
Bates, R. W.; Sa-Ei, K. Tetrahedron 2002, 58, 5957.
oil. ½a 2D5
ꢂ
ꢁ42.31 (c 1.31, CHCl3); IR (film): mmax 2953, 2933, 1704, 1423, 1254,
1101 cmꢁ1
;
1H NMR (400 MHz, CDCl3, rotamers): d 7.37–7.28 (m, 5H), 5.15 (br
s, 2H), 4.90–4.85 (m, 1H), 4.04–4.01 (m, 1/2H), 3.92–3.89 (m, 1/2H), 3.78–
3.71(m, 1H), 2.87–2.71 (m, 2H), 2.48–2.46 (m, 1H), 2.21 (br s, 3/2H), 2.06 (m, 3/
2H), 1.71–1.68 (m, 2H), 1.64–1.45 (m, 2H), 0.94 (s, 9H), ꢁ0.18 (s, 3H), ꢁ1.20 (s,
3H) ppm; 13C NMR (100 MHz, CDCl3): d 207.8, 155.4, 136.5, 128.4, 127.9, 127.8,
69.2, 67.2, 53.0, 39.5, 38.2, 30.1, 28.5, 25.7, 23.7, 18.0, ꢁ0.05, ꢁ5.01 ppm; MS
(ESI): 428.2 (M+Na+); HRMS (MALDI/DHB) calcd for (C22H35NO4Si+Na+):
428.2233, found: 428.2256.
12. (a) Pilli, R. A.; Dias, L. C.; Maldaner, A. O. J. Org. Chem. 1995, 60, 717; (b) Pilli, R.
A.; Dias, L. C.; Maldaner, A. O. Tetrahedron Lett. 1993, 34, 2729.
13. Vink, M. K. S.; Schortinghuis, C. A.; Luten, J.; van Maarseveen, J. H.; Schoemaker,
H. E.; Hiemstra, H.; Rutjes, F. P. J. T. J. Org. Chem. 2002, 67, 7869.
14. Barringer, D. F., Jr.; Berkelhemmer, G.; Carter, S. D.; Goldman, L.; Lanzilotti, A. E.
J. Org. Chem. 1973, 38, 1933.
15. Hajos, Z. G.; Wachter, M. P.; Werblood, H. M.; Adams, R. E. J. Org. Chem. 1984,
49, 2600.
16. (a) Chamberlin, A. R.; Chung, J. Y. L. J. Am. Chem. Soc. 1983, 105, 3653; (b)
Thaning, M.; Wistrand, L.-G. Helv. Chim. Acta 1986, 69, 1711; (c) Skagami, K.;
Kamikubo, T.; Ogasawara, K. Chem. Commun. 1996, 1433.
17. Deslongchamps, P. Stereoelectronic Effetcs in Organic Chemistry; Pergamon: New
York, 1983.
18. Romero, J. A. C.; Tabacco, S. A.; Woerpel, K. A. J. Am. Chem. Soc. 2000, 122, 168–
169.
19. Takaya, Y.; Tasaka, H.; Chiba, T.; Uwai, K.; Tanitsu, M.; Kim, H.-S.; Wataya, Y.;
Miura, M.; Takeshita, M.; Oshima, Y. J. Med. Chem. 1999, 42, 3163.
2. (a) Koepfli, J. B.; Mead, J. F.; Brockman, Jr. J. A. J. Am. Chem. Soc. 1947, 69, 1837;
(b) Koepfli, J. B.; Mead, J. F.; Brockman, J. A., Jr. J. Am. Chem. Soc. 1949, 71, 1048;;
(c) Chou, T. Q.; Jang, C. S.; Fu, F. Y.; Kao, Y. S.; Huang, K. C. Science 1947, 29, 49;
(d) Chou, T.-Q.; Fu, F. Y.; Kao, Y. S. J. Am. Chem. Soc. 1948, 70, 1765.
3. (a) Ablondi, F.; Gordon, S.; Morton, J., II; Williams, J. H. J. Org. Chem. 1952, 17,
14; (b) Kato, M.; Inaba, M.; Itahana, H.; Ohara, E.; Nakamura, K.; Uesato, S.;
Inouye, H.; Fujita, T. Shoyakugaku Zasshi 1990, 44, 288.
4. (a) Kobayashi, S.; Ueno, M.; Suzuki, R.; Ishitani, H. Tetrahedron Lett. 1999, 40,
2175; (b) Kobayashi, S.; Ueno, M.; Suzuki, R.; Ishitani, H.; Kim, H. S.; Wataya, Y.
J. Org. Chem. 1999, 64, 6833.
5. For an early synthesis, see: (a) Baker, B. R.; McEvoy, F. J.; Schaub, R. E.; Joseph, J.
P.; Williams, J. H. J. Org. Chem. 1953, 18, 178; For recent synthesis, see: (b)
Burgess, L. E.; Gross, E. K. M.; Jurka, J. Tetrahedron Lett. 1996, 37, 3255; (c)
Takeuchi, Y.; Abe, H.; Harayama, T. Chem. Pharm. Bull. 1999, 47, 905; (d)
Takeuchi, Y.; Hattori, M.; Abe, H.; Harayama, T. Synthesis 1999, 1814; (e) Okitsu,
O.; Suzuki, R.; Kobayashi, S. Synlett 2000, 989; (f) Takeuchi, Y.; Azuma, K.;
Takakura, K.; Abe, H.; Harayama, T. J. Chem. Soc., Chem. Commun. 2000, 1643;