Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
We thank the financial support from the NSFC (21562026,
21762025, 21702027), the Natural Science Foundation of
Jiangxi Province (20161BAB203084) and Science Foundation of
Education Department of Jilin Province (JJKH20180013KJ).
DOI: 10.1039/C9CC00768G
Romero and D. A. Nicewicz, Chem. Rev., 2016, 116, 10075; (g) C.-S.
Wang, P. H. Dixneuf and J.-F. Soulé, Chem. Rev., 2018, 118, 7532;
(h) H. Zhang and A. Lei, Asian J. Org. Chem., 2018, 7, 1164; (i) Q.-Q.
Zhou, Y.-Q. Zou, L.-Q. Lu and W.-J. Xiao, Angew. Chem., Int. Ed.,
2018, 57, 2. For selected examples, see: (j) Q. Y. Meng, J. J. Zhong,
Q. Liu, X. W. Gao, H. H. Zhang, T. Lei, Z. J. Li, K. Feng, B. Chen, C. H.
Tung and L. Z. Wu, J. Am. Chem. Soc., 2013, 135, 19052. (k) J. Liu,
Q. Liu, H. Yi, C. Qin, R. Bai, X. Qi, Y. Lan and A. Lei, Angew. Chem.,
Int. Ed., 2014, 53, 502. (l) G. Zhang, C. Liu, H. Yi, Q. Meng, C. Bian, H.
Chen, J. X. Jian, L. Z. Wu and A. Lei, J. Am. Chem. Soc., 2015, 137,
9273.
Conflicts of interest
The authors declare no competing financial interest.
Notes and references
1. For selected recent reviews on reductive cross-coupling, see: (a) C.
E. Knappke, S. Grupe, D. Gärtner, M. Corpet, C. Gosmini and A.
Jacobi von Wangelin, Chem. - Eur. J., 2014, 20, 6828; (b) D. A.
Everson and D. J. Weix, J. Org. Chem., 2014, 79, 4793; (c) T.
Moragas, A. Correa and R. Martin, Chem. - Eur. J., 2014, 20, 8242;
(d) D. J. Weix, Acc. Res. Chem., 2015, 48, 1767; (e) J. Gu, X. Wang,
W. Xue and H. Gong, Org. Chem. Front., 2015, 2, 1411; (f) X. Wang,
Y. Dai and H. Gong, Top. Curr. Chem., 2016, 374, 43.
2. (a) C. Zhao, X. Jia, X. Wang and H. Gong, J. Am. Chem. Soc., 2014,
136, 17645; (b) E. Serrano and R. Martin, Angew. Chem., Int. Ed.,
2016, 55, 11207; (c) C. Gao, J. Li, J. Yu, H. Yang and H. Fu, Chem.
Commun., 2016, 52, 7292; (d) H. Chen, X. Jia, Y. Yu, Q. Qian and H.
Gong, Angew. Chem., Int. Ed., 2017, 56, 13103; (e) Y.-L. Lai and J.-
M. Huang, Org. Lett., 2017, 19, 2022.
3. (a) K. W. Quasdorf and L. E. Overman, Nature, 2014, 516, 181; (b)
Y. Liu, S.-J. Han, W.-B. Liu and B. M. Stoltz, Acc. Chem. Res., 2015,
48, 740; (c) W. Zi, Z. Zuo and D. Ma, Acc. Chem. Res., 2015, 48, 702;
(d) J. Kim and M. Movassaghi, Acc. Chem. Res., 2015, 48, 1159; (e)
R. Long, J. Huang, J. Gong and Z. Yang, Nat. Prod. Rep., 2015, 32,
1584.
4. (a) X. Wang, S. Wang, W. Xue and H. Gong, J. Am. Chem. Soc., 2015,
137, 11562; (b) P. Zhang, C. C. Le and D. W. C. MacMillan, J. Am.
Chem. Soc., 2016, 138, 8084; (c) X. Wang, G. Ma, Y. Peng, C. E.
Pitsch, B. J. Moll, T. D. Ly, X. Wang and H. Gong, J. Am. Chem. Soc.,
2018, 140, 14490; (d) L. Luo, X.-Y. Zhai, Y.-W. Wang, Y. Peng and H.
Gong, Chem. - Eur. J., 2019, 25, 989.
13. Generation of carbon radical via photoredox catalysis: (a) C. R.
Jamison and L. E. Overman, Acc. Chem. Res., 2016, 49, 1578; (b) J.
P. Goddard, C. Ollivier and L. Fensterbank, Acc. Chem. Res., 2016,
49, 1924; (c) J. K. Matsui, S. B. Lang, D. R. Heitz and G. A. Molander,
ACS Catal., 2017, 7, 2563; (d) S. Roslin and L. R. Odell, Eur. J. Org.
Chem., 2017, 2017, 1993.
14. Selected reviews on the merger of photoredox and transtion metal
catalysis: (a) C. K. Prier, D. A. Rankic and D. W. MacMillan, Chem.
Rev., 2013, 113, 5322; (b) Fabry, D. C.; Rueping, M. Acc. Chem. Res.,
2016, 49, 1969; (c) O. Reiser, Acc. Chem. Res., 2016, 49, 1990; (d)
M. N. Hopkinson, A. Tlahuext-Aca and F. Glorius, Acc. Chem. Res.,
2016, 49, 2261; (e) B. L. Tóth, O. Tischler and Z. Novák,
Tetrahedron Lett., 2016, 57, 4505; (f) J. Twilton, C. Le, P. Zhang, M.
H. Shaw, R. W. Evans and D. W. C. MacMillan, Nat. Rev. Chem.,
2017, 1, 52; (g) K. N. Lee and M. Y. Ngai, Chem. Commun., 2017, 53,
13093; (h) E. B. McLean and A.-L. Lee, Tetrahedron, 2018, 74, 4881.
15. Selected recent reviews on photoredox and Nickel dual catalysis:
(a) J. A. Milligan, J. P. Phelan, S. O. Badir and G. A. Molander,
Angew. Chem., Int. Ed., 2018, advance article, DOI:
Jouffroy, N. R. Patel and G. A. Molander, Acc. Chem. Res., 2016, 49,
1429; (c) L. N. Cavalcanti and G. A. Molander, Top. Curr. Chem.,
2016, 374, 39; (d) Y.-Y. Gui, L. Sun, Z.-P. Lu and D.-G. Yu, Org. Chem.
Front., 2016, 3, 522.
16. Selected examples on the reductive generation of tertiary alkyl
radical via photoredox catalysis: (a) G. L. Lackner, K. W. Quasdorf
and L. E. Overman, J. Am. Chem. Soc., 2013, 135, 15342; (b) G. L.
Lackner, K. W. Quasdorf, G. Pratsch and L. E. Overman, J. Org.
Chem., 2015, 80, 6012; (c) G.-Z. Wang, R. Shang, W.-M. Cheng and
Y. Fu, J. Am. Chem. Soc., 2017, 139, 18307; (d) A. Tlahuext-Aca, R.
A. Garza-Sanchez and F. Glorius, Angew. Chem., Int. Ed., 2017, 56,
3708; (e) W.-J. Zhou, G.-M. Cao, G. Shen, X.-Y. Zhu, Y.-Y. Gui, J.-H.
Ye, L. Sun, L.-L. Liao, J. Li and D.-G. Yu, Angew. Chem., Int. Ed., 2017,
56, 15683; (f) K. Xu, Z. Tan, H. Zhang, J. Liu, S. Zhang and Z. Wang,
Chem. Commun., 2017, 53, 10719; (g) A. Fawcett, J. Pradeilles, Y.
Wang, T. Mutsuga, E. L. Myers and V. K. Aggarwal, Science, 2017,
357, 283; (h) D. Kurandina, M. Rivas, M. Radzhabov and V.
Gevorgyan, Org. Lett.,2018, 20, 357; (i) G.-Z. Wang, R. Shang and Y.
Fu, Org. Lett.,2018, 20, 888; (j) A. C. Sun, E. J. McClain, J. W. Beatty
and C. R. J. Stephenson, Org. Lett., 2018, 20, 3487.
5. (a) A. Krasovskiy, C. Duplais and B. H. Lipshutz, Org. Lett., 2010, 12,
4742; (b) V. Krasovskaya, A. Krasovskiy, A. Bhattacharjya and B. H.
Lipshutz, Chem. Commun., 2011, 47, 5717.
6. (a) A. H. Cherney and S. E. Reisman, J. Am. Chem. Soc., 2014, 136,
14365; (b) N. Suzuki, J. L. Hofstra, K. E. Poremba and S. E. Reisman,
Org. Lett., 2017, 19, 2150; (c) J. L. Hofstra, A. H. Cherney, C. M.
Ordner and S. E. Reisman, J. Am. Chem. Soc., 2018, 140, 139.
7. (a) C. Qiu, K. Yao, X. Zhang and H. Gong, Org. Biomol. Chem., 2016,
14, 11332; (b) H. Gong, K. Lin, Q. Qian, J. Gu, C. Qiu and W. Lu,
Synthesis, 2017, 49, 1867; (c) J. Liu and H. Gong, Org. Lett., 2018,
20, 7991.
8. K. A. Johnson, S. Biswas and D. J. Weix, Chem. - Eur. J., 2016, 22,
7399.
9. Y. Cai, A. D. Benischke, P. Knochel and C. Gosmini, Chem. - Eur. J.,
2017, 23, 250.
17. The imidazole salt might serve as an additive rather than a ligand:
1) the salt should react with a strong base to release the NHC
ligand; 2) moderate yield could still be achieved without the salt.
18. The role of MgCl2 is proposed to accelerate the reduction rate of
the high valence of nickel complex, see ref. 2a.
10. (a) X. Lu, Y. Wang, B. Zhang, J. J. Pi, X. X. Wang, T. J. Gong, B. Xiao
and Y. Fu, J. Am. Chem. Soc., 2017, 139, 12632; (b) L. Yu, M. L. Tang,
C. M. Si, Z. Meng, Y. Liang, J. Han and X. Sun, Org. Lett., 2018, 20,
4579.
19. (a) D. N. Primer and G. A. Molander, J. Am. Chem. Soc., 2017, 139,
9847; (b) Y. Shen, Y. Gu and R. Martin, J. Am. Chem. Soc., 2018,
140, 12200.
20. (a) Z. Duan, W. Li and A. Lei, Org Lett., 2016, 18, 4012; (b) A. Paul,
M. D. Smith and A. K. Vannucci, J. Org. Chem., 2017, 82, 1996; (c) L.
Peng, Z. Li and G. Yin, Org Lett., 2018, 20, 1880.
11. Q.-Q. Zhou, S. J. S. Düsel, L.-Q. Lu, B. König and W.-J. Xiao,
Chem. Commun., 2019, 55, 107.
12. Selected recent reviews on photoredox catalysis: (a) M. H. Shaw, J.
Twilton and D. W. MacMillan, J. Org. Chem., 2016, 81, 6898; (b) I.
Ghosh, L. Marzo, A. Das, R. Shaikh and B. König, Acc. Chem. Res.,
2016, 49, 1566; (c) J.-R. Chen, X.-Q. Hu, L.-Q. Lu and W.-J. Xiao, Acc.
Chem. Res., 2016, 49, 1911; (d) D. Staveness, I. Bosque and C. R.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins