7458 Inorganic Chemistry, Vol. 48, No. 15, 2009
Ding et al.
in areas of coordination polymers and supramolecules, since
they may exist in several distinct extended architectures (or
lattices) in response to external stimuli. Such characteri-
stic crystal transformations are frequently triggered by
either guest elimination/inclusion1f,3d,5-12,13a,14c,16 or guest ex-
change.3a,3b,13b,14a,14b,15 In addition, a few examples have shown
that structural transformation behaviors are driven by physical
stimuli, such as light,17-19 temperature,1e,3c,12,20-22 acidobasi-
city,23 and so forth. It is noteworthy that the transformation of
the entire structure of some coordination polymers frequently
occurs from one crystalline state to another without destruction
of the molecular skeleton or without dissolution and recrystal-
lization of the materials. There are limited examples exhibiting
structural transformation through a dissolution/recrystalliza-
tion process.24 Rao and co-workers published a series of
interesting results where low-dimensional zinc phosphates
transformed to complex open-framework structures on heating
in water with or without added amines.25 We recently reported
on several charged 3D porous coordination polymers (CPs)
with the general formula {A2[M3(btec)2(H2O)4]}n (A=K, Cs;
M = Co, Ni; btec = benzene-1,2,4,5-tetracarboxylate) that
are soluble in an aqueous solution of cesium chloride (CsCl)
or potassium chloride (KCl).26 After dissolution, these com-
pounds reorganize to form new metal-carboxylate species
Cs2[M(btec)(H2O)4] (M = Co, Ni) and the stable metal-
carboxylate frameworks of K2[M3(btec)2(H2O)4] (M = Co,
Ni). Note that several products could not be obtained directly
using a simple self-assembly synthetic process. Incorporation of
alkali metal ions inside the transition metal/carboxylate frame-
work is itself interesting since the alkali ions are relevant as
potential adsorption sites in the context of adsorbents for
hydrogen.27 Herein, we report on our ongoing investigations
of dissolution/reorganization toward the structural rearrange-
ment of CPs {A2[M3(btec)2(H2O)4]}n in aqueous lithium chlor-
ide or sodium chloride solutions. Interesting modes of cleavage
and reformation of metal-carboxylate donating bonds in
coordination frameworks during dissolution/reorganization in
aqueous solution were observed, giving rise to extremely rich
and diverse structural rearrangements.
(12) Cheng, X.-N.; Zhang, W.-X.; Chen, X.-M. J. Am. Chem. Soc. 2007,
129, 15738.
(13) (a) Luo, T.-T.; Hsu, L.-Y.; Su, C.-C.; Ueng, C.-H.; Tsai,; Lu, K.-L.
Inorg. Chem. 2007, 46, 1532. (b) Luo, T.-T.; Liu, Y.-H.; Chan, C.-C.; Huang,
S.-M.; Chang, B.-C.; Lu, Y.-L.; Lee, G.-H.; Peng, S.-M.; Wang, J.-C.; Lu, K.-L.
Inorg. Chem. 2007, 46, 10044.
(14) (a) Jung, O.-S.; Kim, Y. J.; Lee, Y.-A.; Park, J. K.; Chae, H. K. J. Am.
Chem. Soc. 2000, 122, 9921. (b) Jung, O.-S.; Kim, Y. J.; Lee, Y.-A.; Chae, H. K.;
Jang, H. G.; Hong, J. Inorg. Chem. 2001, 40, 2105. (c) Jung, O.-S.; Park, S. H.;
Kim, K. M.; Jang, H. G. Inorg. Chem. 1998, 37, 5781.
(15) (a) Min, K. S.; Suh, M. P. J. Am. Chem. Soc. 2000, 122, 6834. (b) Noro,
S.-i.; Kitaura, R.; Kondo, M.; Kitagawa, S.; Ishii, T.; Matsuzaka, H.; Yamashita,
M. J. Am. Chem. Soc. 2002, 124, 2568. (c) Vougo-Zanda, M.; Huang, J.;
Anokhina, E.; Wang, X.; Jacobson, A. J. Inorg. Chem. 2008, 47, 11535.
(16) (a) Barea, E.; Navarro, J. A. R.; Salas, J. M.; Masciocchi, N.; Galli,
S.; Sironi, A. J. Am. Chem. Soc. 2004, 126, 3014. (b) Chen, C.-Y.; Cheng, P.-Y.;
Wu, H.-H.; Lee, H. M. Inorg. Chem. 2007, 46, 5691. (c) Ghosh, S. K.; Zhang, J.-
P.; Kitagawa, S. Angew. Chem., Int. Ed. 2007, 46, 7965. (d) Sun, R.; Li, Y.-Z.;
Bai, J.; Pan, Y. Cryst. Growth Des. 2007, 7, 890. (e) Wang, X.-Y.; Scancella, S.
M.; Sevov, C. Chem. Mater. 2007, 19, 4506.
Results and Discussion
(17) (a) Nagarathinam, M.; Vittal, J. J. Chem. Commun. 2008, 438. (b)
Nagarathinam, M.; Vittal, J. J. Angew. Chem., Int. Ed. 2006, 45, 4337. (c) Toh, N.
L.; Nagarathinam, M.; Vittal, J. J. Angew. Chem., Int. Ed. 2005, 44, 2237.
(18) (a) Papaefstathiou, G. S.; Zhong, Z.; Geng, L.; MacGillivray, L. R.
J. Am. Chem. Soc. 2004, 126, 9158. (b) Chu, Q.; Swenson, D. C.; MacGillivray,
L. R. Angew. Chem., Int. Ed. 2005, 44, 3569. (c) Papaefstathiou, G. S.; Georgiev,
Dissolution/Reorganization of Cobalt(II)- and Nickel-
(II)-Carboxylate Frameworks. Porous CPs {A2[M3(btec)2-
(H2O)4] xH2O}n (1 6H2O, A = K, M = Co, x = 6; 2
3
3
3
4H2O, A=K, M=Ni, x=4; 3 3H2O, A=Cs, M=Co,
3
x=3; and 4 3H2O, A=Cs, M=Ni, x=3) were prepared
3
following procedures reported in the literature.26 Treatment
of 1 or 2 in an aqueous solution of lithium chloride (LiCl)
resulted in a dissolution/reorganization process, affording
the new metal-carboxylate products [Co2(btec)-
(H2O)10] H2O (5 H2O) and {Li2[Ni3(btec)2(H2O)10] 3.5-
ꢀ ꢁ
I. G.; Fricic, T.; MacGillivray, L. R. Chem. Commun. 2005, 3974.
(19) (a) Blake, A. J.; Champness, N. R.; Chung, S. S. M.; Li, W.-S.;
::
Schroder, M. Chem. Commun. 1997, 1675. (b) Vela, M. J.; Buchholz, V.;
Enkelmann, V.; Snider, B. B.; Foxman, B. M. Chem. Commun. 2000, 2225. (c)
Alvaro, M.; Ferrer, B.; García, H.; Rey, F. Chem. Commun. 2002, 2012. (d) Mal,
N. K.; Fujiware, M.; Tanaka, Y. Nature 2003, 421, 350. (e) Michaelides, A.;
Skoulika, S.; Siskos, M. G. Chem. Commun. 2004, 2418. (f) Lee, J. Y.; Hong, S.
3
3
3
H2O}n (6 3.5H2O), respectively. When the lithium chloride
~
3
J.; Kim, C.; Kim, Y. Dalton Trans. 2005, 3716. (g) Briceno, A.; Leal, D.;
was replaced with sodium chloride (NaCl) under similar
reaction conditions, dissolution/reorganization processes
were also observed. The cobalt species 1 was converted into
Atencioa, R.; Delgado, G. D. Chem. Commun. 2006, 3534.
(20) (a) Hu, C.; Englert, U. Angew. Chem., Int. Ed. 2006, 45, 3457. (b) Hu,
C.; Englert, U. Angew. Chem., Int. Ed. 2005, 44, 2281.
(21) (a) Ranford, J. D.; Vittal, J. J.; Wu, D.; Yang, X. Angew. Chem., Int.
Ed. 1999, 38, 3498. (b) Ranford, J. D.; Vittal, J. J.; Wu, D. Angew. Chem., Int.
Ed. 1998, 37, 1114. (c) Vittal, J. J.; Yang, X. Cryst. Growth Des. 2002, 2, 259.
(22) (a) Rather, B.; Moulton, B.; Walsh, R. D. B.; Zaworotko, M. J.
Chem. Commun. 2002, 694. (b) Legrand, Y.-M.; van der Lee, A.; Masquelez, N.;
Rabu, P.; Barboiu, M. Inorg. Chem. 2007, 46, 9083. (c) Ma, J.-P.; Dong, Y.-B.;
Huang, R.-Q.; Smith, M. D.; Su, C.-Y. Inorg. Chem. 2005, 44, 6143. (d) Shin, D.
M.; Lee, I. S.; Cho, D.; Chung, Y. K. Inorg. Chem. 2003, 42, 7722. (e) Mahmoudi,
G.; Morsali, A. Cryst. Growth Des. 2008, 8, 391. (f) Kepert, C. J.; Rosseinsky, M.
J. Chem. Commun. 1998, 31. (g) Chen, B.; Ockwig, N. W.; Fronczek, F. R.;
Contreras, D. S.; Yaghi, O. M. Inorg. Chem. 2005, 44, 181.
(23) (a) Leung, K. C.-F.; Mendes, P. M.; Magonov, S. N.; Northrop, B.
H.; Kim, S.; Patel, K.; Flood, A. H.; Tseng, H.-R.; Stoddart, J. F. J. Am.
Chem. Soc. 2006, 128, 10707. (b) Ding, N.; Kanatzidis, M. G. Angew. Chem.,
Int. Ed. 2006, 45, 1397.
(24) (a) Friese, V. A.; Kurth, D. G. Coord. Chem. Rev. 2008, 252, 199. (b)
Wu, H. C.; Thanasekaran, P.; Tsai, C. H.; Wu, J. Y.; Huang, S. M.; Wen, Y. S.; Lu,
K. L. Inorg. Chem. 2006, 45, 295. (c) Karabach, Y. Y.; Kirillov, A. M.; da Silva,
M. F. C. G.; Kopylovich, M. N.; Pombeiro, A. J. L. Cryst. Growth Des. 2006, 6,
2200. (d) Zhang, J.-J.; Zhao, Y.; Gamboa, S. A.; Lachgar, A. Cryst. Growth Des.
2008, 8, 172. (e) Kim, H.-J.; Lee, J.-H.; Lee, M. Angew. Chem., Int. Ed. 2005, 44,
5810. (f) Lidrissi, C.; Romerosa, A.; Saoud, M.; Serrano-Ruiz, M.; Gonsalvi, L.;
Peruzzini, M. Angew. Chem., Int. Ed. 2005, 44, 2568. (h) Murugavel, R.;
the
Co(btec)(H2O)8]n (7), whereas the nickel-carboxylate fra-
mework was transformed into {[Na4Ni2(btec)2-
(H2O)18] 3H2O}n (8 3H2O). These results are summarized
metal-carboxylate
product
[Na2-
2
3
3
in Scheme 1.
Structural Descriptions of Products Obtained from the
Dissolution/Reorganization Process. [Co2(btec)(H2O)10]
H2O (5 H2O). A structural analysis showed that
3
3
5 H2O is comprised of two crystallographically distinct
3
(25) (a) Dan, M.; Rao, C. N. R. Chem. Commun. 2003, 2212. (b)
Choudhury, A.; Neeraj, S.; Natarajana, S.; Rao, C. N. R. J. Mater. Chem.
2001, 11, 1537. (c) Ayi, A. A.; Choudhury, A.; Natarajan, S.; Neeraj, S.; Rao, C.
N. R. J. Mater. Chem. 2001, 11, 1181. (d) Padmanabhan, M.; Joseph, J. C.;
Thirumurugan, A.; Rao, C. N. R. Dalton Trans. 2008, 2809.
(26) (a) Wu, J.-Y.; Yang, S.-L.; Luo, T.-T.; Liu, Y.-H.; Cheng, Y.-W.;
Chen, Y.-F.; Wen, Y.-S.; Lin, L.-G.; Lu, K.-L. Chem.;Eur. J. 2008, 14,
7136. (b) Wu, J.-Y.; Ding, M.-T.; Wen, Y.-S.; Liu, Y.-H.; Lu, K.-L. Chem.;Eur.
J. 2009, 15, 3604.
(27) (a) Mulfort, K. L.; Wilson, T. M.; Wasielewski, M. R.; Hupp, J. T.
Langmuir 2009, 25, 503. (b) Mulfort, K. L.; Hupp, J. T. Inorg. Chem. 2008, 47,
7936. (c) Han, S. S.; Goddard, W. A. III. J. Am. Chem. Soc. 2007, 129, 8422.
ꢁ
Sathiyendiran, M.; Pothiraja, R.; Walawalkar, M. G.; Mallah, T.; Riviere, E.
Inorg. Chem. 2004, 43, 945.