Paper
Driven Organic Transformations, ACS Appl. Mater. Interfaces,
Catalysis Science & Technology
promising platform for efficient photocatalysis, Mater. Chem.
Front., 2020, 4, 332; (c) T.-X. Wang, H.-P. Liang, D. A. Anito,
X. Ding and B.-H. Han, Emerging applications of porous
organic polymers in visible-light photocatalysis, J. Mater.
Chem. A, 2020, 8, 7003; (d) C. Dai and B. Liu, Conjugated
polymers for visible-light-driven photocatalysis, Energy
Environ. Sci., 2020, 13, 24; (e) J. Byun and K. A. I. Zhang,
Designing conjugated porous polymers for visible light-
driven photocatalytic chemical transformations, Mater.
Horiz., 2020, 7, 15.
2020, 12, 20354; (l) Y. Zhi, K. Li, H. Xia, M. Xue, Y. Mu and
X. Liu, Robust porous organic polymers as efficient
heterogeneous organo-photocatalysts for aerobic oxidation
reactions, J. Mater. Chem. A, 2017, 5, 8697.
14 (a) A. I. Cooper, Conjugated Microporous Polymers, Adv.
Mater., 2009, 21, 1291; (b) J.-X. Jiang, F. Su, A. Trewin, C. D.
Wood, H. Niu, J. T. A. Jones, Y. Z. Khimyak and A. I. Cooper,
Synthetic Control of the Pore Dimension and Surface Area in
Conjugated Microporous Polymer and Copolymer Networks,
J. Am. Chem. Soc., 2008, 130, 7710; (c) J.-X. Jiang, F. Su, A.
Trewin, C. D. Wood, N. L. Campbell, H. Niu, C. Dickinson,
A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak and A. I.
Cooper, Conjugated Microporous Poly(aryleneethynylene)
Networks, Angew. Chem., Int. Ed., 2007, 46, 8574.
15 (a) Q. Chen, M. Luo, P. Hammershøj, D. Zhou, Y. Han, B. W.
Laursen, C.-G. Yan and B.-H. Han, Microporous
Polycarbazole with High Specific Surface Area for Gas
Storage and Separation, J. Am. Chem. Soc., 2012, 134, 6084;
(b) T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J.
Xu, F. Deng, J. M. Simmons, S. Qiu and G. Zhu, Targeted
20 (a) W.-J. Liu, Y. Zhou, Y. Ma, Y. Cao, J. Wang and J. Pei, Thin
Film Organic Transistors from Air-Stable Heteroarenes:
Anthra[1,2-b:4,3-b′:5,6-b″:8,7-b‴]tetrathiophene Derivatives,
Org. Lett., 2007, 9, 4187; (b) J. L. Brusso, O. D. Hirst, A.
Dadvand, S. Ganesan, F. Cicoira, C. M. Robertson, R. T.
Oakley, F. Rosei and D. F. Perepichka, Two-Dimensional
Structural Motif in Thienoacene Semiconductors: Synthesis,
Structure, and Properties of Tetrathienoanthracene Isomers,
Chem. Mater., 2008, 20, 2484.
21 (a) I. Zimmermann, J. Urieta-Mora, P. Gratia, J. Aragó, G.
Grancini, A. Molina-Ontoria, E. Ortí, N. Martín and M. K.
Nazeeruddin, High-Efficiency Perovskite Solar Cells Using
Molecularly Engineered, Thiophene-Rich, Hole-Transporting
Materials: Influence of Alkyl Chain Length on Power
Conversion Efficiency, Adv. Energy Mater., 2017, 7, 1601674;
(b) A. A. Leitch, A. Mansour, K. A. Stobo, I. Korobkov and
J. L. Brusso, Functionalized Tetrathienoanthracene:
Enhancing π–π Interactions Through Expansion of the
π-Conjugated Framework, Cryst. Growth Des., 2012, 12, 1416.
22 W.-K. An, S.-J. Zheng, Y.-N. Du, S.-Y. Ding, Z.-J. Li, S. Jiang, Y.
Qin, X. Liu, P.-F. Wei, Z.-Q. Cao, M. Song and Z. Pan,
Thiophene-embedded conjugated microporous polymers for
photocatalysisCatalysis, Catal. Sci. Technol., 2020, 10, 5171.
23 S. Han, Z. Li, S. Ma, Y. Zhi, H. Xia, X. Chen and X. Liu,
Bandgap engineering in benzotrithiophene-based conjugated
microporous polymers: a strategy for screening metal-free
heterogeneous photocatalysts, J. Mater. Chem. A, 2021, 9,
3333.
24 (a) L.-P. Jing, J.-S. Sun, F. Sun, P. Chen and G. Zhu, Porous
aromatic framework with mesopores as a platform for a
super-efficient heterogeneous Pd-based organometallic
catalysis, Chem. Sci., 2018, 9, 3523; (b) C.-A. Wang, Y.-F. Han,
K. Nie and Y.-W. Li, Porous organic frameworks with
mesopores and [Ru(bpy)3]2+ ligand built-in as a highly
efficient visible-light heterogeneous photocatalyst, Mater.
Chem. Front., 2019, 3, 1909.
25 (a) C.-A. Wang, Y.-W. Li, X.-L. Cheng, J.-P. Zhang and Y.-F.
Han, Eosin Y dye-based porous organic polymers for highly
efficient heterogeneous photocatalytic dehydrogenative
coupling reaction, RSC Adv., 2017, 7, 408; (b) C.-A. Wang,
Y.-W. Li, X.-M. Hou, Y.-F. Han, K. Nie and J.-P. Zhang, N-
Heterocyclic Carbene-based Microporous Organic Polymer
Supported Palladium Catalyst for Carbon-Carbon Coupling
Reaction, ChemistrySelect, 2016, 1, 1371; (c) C.-A. Wang, Y.-F.
Han, Y.-W. Li, K. Nie, X.-L. Cheng and J.-P. Zhang, Bipyridyl
palladium embedded porous organic polymer as highly
Synthesis of
a Porous Aromatic Framework with High
Stability and Exceptionally High Surface Area, Angew. Chem.,
Int. Ed., 2009, 48, 9457.
16 (a) Y. Xu, L. Chen, Z. Guo, A. Nagai and D. Jiang, Light-
Emitting Conjugated Polymers with Microporous Network
Architecture: Interweaving Scaffold Promotes Electronic
Conjugation, Facilitates Exciton Migration, and Improves
Luminescence, J. Am. Chem. Soc., 2011, 133, 17622; (b) L.
Chen, Y. Honsho, S. Seki and D. Jiang, Light-Harvesting
Conjugated Microporous Polymers: Rapid and Highly
Efficient Flow of Light Energy with a Porous Polyphenylene
Framework as Antenna, J. Am. Chem. Soc., 2010, 132, 6742.
17 (a) S. Gu, J. Guo, Q. Huang, J. He, Y. Fu, G. Kuang, C. Pan
and G. Yu, 1,3,5-Triazine-Based Microporous Polymers with
Tunable Porosities for CO2 Capture and Fluorescent
Sensing, Macromolecules, 2017, 50, 8512; (b) J. Dong, A. K.
Tummanapelli, X. Li, S. Ying, H. Hirao and D. Zhao,
Fluorescent Porous Organic Frameworks Containing
Molecular Rotors for Size-Selective Recognition, Chem.
Mater., 2016, 28, 7889.
18 (a) Y.-B. Zhou and Z.-P. Zhan, Conjugated Microporous
Polymers for Heterogeneous Catalysis, Chem. – Asian J.,
2018, 13, 9; (b) M. Rose, Nanoporous Polymers: Bridging the
Gap between Molecular and Solid Catalysts?, ChemCatChem,
2014, 6, 1166; (c) Y. Zhang and S. N. Riduan, Functional
porous organic polymers for heterogeneous catalysis, Chem.
Soc. Rev., 2012, 41, 2083; (d) P. Kaur, J. T. Hupp and S. T.
Nguyen,
Porous
Organic
Polymers
in
Catalysis:
Opportunities and Challenges, ACS Catal., 2011, 1, 819.
19 (a) S. Luo, Z. Zeng, G. Zeng, Z. Liu, R. Xiao, P. Xu, H. Wang,
D. Huang, Y. Liu, B. Shao, Q. Liang, D. Wang, Q. He, L. Qin
and Y. Fu, Recent advances in conjugated microporous
polymers for photocatalysis: designs, applications, and
prospects, J. Mater. Chem. A, 2020, 8, 6434; (b) T. Zhang, G.
Xing, W. Chen and L. Chen, Porous organic polymers: a
Catal. Sci. Technol.
This journal is © The Royal Society of Chemistry 2021