pubs.acs.org/joc
The main strategies of the synthesis of cephalosporin
Chiral Base-Catalyzed Enantioselective Synthesis of
4-Aryloxyazetidinones and 3,4-Benzo-5-oxacephams
and penicillin congeners make use of 6-aminopenicil-
lanic acid (6-APA) and 7-aminocephalosporinic acid
(7-ACA) as readily available chiral starting materials.
Nevertheless, this biosynthetic approach is limited, and
many novel β-lactam therapeutics are obtained via total
synthesis.4
Anna Koziol,† Bartlomiej Furman,† Jadwiga Frelek,†
†
Magdalena Woznica, Elisa Altieri, and
‡
ꢀ
Marek Chmielewski*,†
†Institute of Organic Chemistry Polish Academy of Sciences,
Kasprzaka 44/52, 01-224 Warsaw, Poland, and ‡Dip. di
Chimica Organica e Biologica, Universitaꢁ, Vill. S. Agata,
I 98166 Messina, Italy
In 1974, Clauss, Grimm, and Prossel5 reported that the 4-
acetoxyazetidin-2-one undergoes a nucleophilic displace-
ment of an acetoxy group with variety of nucleophiles. This
observation prompted many laboratories to use racemic or
chiral 4-acyloxyazetidinones as substrates for the synthesis
of variety of β-lactam antibiotics.6
For several years, our laboratory has been interested in
the synthesis of oxygen analogues of penicillin and cepha-
losporin. We have reported attractive diastereoselective
approaches to clavams and oxacephams starting from the
carbohydrate precursors.7 The present paper describes
for the first time an enantioselective approach to the con-
struction of 3,4-benzo-2-hydroxy-5-oxacephams (3) and
4-phenoxyazetidinones (5). This new approach is based
on the chiral Lewis base-promoted intermolecular nucleo-
philic substitution at C-4 of 4-formyloxyazetidinone (1)
(Scheme 1).
Received April 21, 2009
Recently, the racemic 3,4-benzo-2-hydroxy-5-oxacep-
hams (3) have been synthesized by the base-catalyzed
(NaOH or EtONa/EtOH) condensation of a salicylaldehyde
(2a) or o-hydroxyphenones (2) with the 4-acetoxyazetidi-
none.8 It appears to be a stepwise process, which occurs via
the nucleophilic substitution of acetoxy group followed by
the addition of β-lactam NH group to the carbonyl group of
the phenone (Scheme 2). In the case of salicylaldehyde (2a),
despite two new stereogenic centers being formed (C-2 and
C-6), the hydroxy group is always syn located to the bridge-
head proton.8
Both acid- and base-catalyzed nucleophilic substitutions
at C-4 of the azetidinone ring proceed via flat intermediates,
an acyliminium cation in the case of the acid-catalyzed
process, or a neutral 1,2-dehydro-azetidin-4-one (6) in the
case of the base-catalyzed one, i.e. through the SN1 or the
Readily available 4-formyloxyazetidinone was enantio-
selectively transformed into 3,4-benzo-2-hydroxy-5-oxa-
cephams and 4-phenyloxyazetidinones upon treatment
with 0.1 equiv of the cinchona alkaloid in toluene via
intermolecular nucleophilic trapping of N-acyliminium
intermediate by the hydroxyl moiety of phenols or
o-hydroxybenzaldehydes. Additionally, the absolute con-
figuration of title compounds was established by CD
spectroscopy.
β-Lactam antibiotics represent the most powerful tool
against bacterial infections.1 Recently, β-lactams also have
been observed to display interesting activity against non-
bacterial diseases.2 Owing to these attractive biological
properties, the synthesis of mono- and polycyclic systems con-
taining the β-lactam ring has been extensively investigated.3
(4) The Organic Chemistry of β-Lactams; Wild, H., Georg, G. I., Ed.;
VCH Publishers: Weinheim, 1993; p 49.
(5) Clauss, K.; Grimm, D.; Prossel, G. Liebigs Ann. Chem. 1974, 539.
(6) (a) Hungerbuhler, E.; Biollaz, M.; Ernest, I.; Kalvoda, J.; Lang, M.;
Schneider, P.; Sedelmeier, G. In New Aspects of Organic Chemistry I; Yoshida,
Z.; Shiba, T.; Ohshiro, Y., Eds.; VCH Publishers: Weinheim, 1989; p 419.
(b) De Bernardo, S.; Tengi, J. P.; Sasso, G. J.; Weigele, M. J. Org. Chem. 1985,
50, 3457. (c) M€uller, J. C.; Toome, V.; Pruess, D. L.; Blount, J. F.; Weigele, M. J.
Antibiot. 1983, 36, 217. (d) Hoppe, D.; Hilpert, T. Tetrahedron 1987, 43, 2467.
(1) (a) Chemistry and Biology of β-Lactam Antibiotics; Morin, R. B.,
Gorman, M., Eds.; Academic Press: New York, 1982; (b)Frontiers of Antibiotics
Research; Umezwa, H., Eds.; Academic Press: Tokio, 1987; (c) Recent Progress
in the Chemical Synthesis of Antibiotics; Lukacs, G., Ohno, M., Eds.; Springer:
Berlin, 1990. (d) Lysek, R.; Borsuk, K.; Furman, B.; Kaluz_a, Z.; Kazimierski, A.;
Chmielewski, M. Curr. Med. Chem. 2004, 11, 1813.
_
(7) (a) Kaluza, Z.; Furman, B.; Patel, M.; Chmielewski, M. Tetrahedron:
_
Asymmetry 1994, 5, 2719. (b) Kaluza, Z.; Furman, B.; Chmielewski, M.
Tetrahedron: Asymmetry 1995, 6, 1719. (c) Chmielewski, M.; Kaluza, Z.;
_
_
ꢀ
Abramski, W.; Belzecki, C.; Grodner, J.; Mostowicz, D.; Urbanski, R.
Synlett 1994, 539. (d) Kaluza, Z.; Furman, B.; Chmielewski, M. J. Org.
_
_
Chem. 1997, 62, 3135. (e) Kaluza, Z.; Lysek, R. Tetrahedron: Asymmetry
(2) Veinberg, G.; Vorona, M.; Shestakova, I.; Kanepe, I.; Lukevics, E.
_
_
Curr. Med. Chem. 2003, 10, 1741.
1997, 8, 2553. (f) Kaluza, Z. Tetrahedron Lett. 1998, 39, 8349. (g) Kaluza, Z.
€
_
(3) (a) Comprehensive Heterocyclic Chemistry II; Katrizky A. R., Rees C.
W., Scriven E. F., Eds.; Pergamon: New York, 1996; Chapters 1.18-1.20; (b)
Ojima, I.; Delaloge, F. Chem. Rev. Soc. 1997, 26, 377. (c) Ojima, I. Acc. Chem.
Res. 1995, 28, 383. (d) Magriotis, P. A. Angew. Chem., Int. Ed. 2001, 40, 4377.
(e) Synthesis of β-Lactam Antibiotics, Chemistry, Biocatalysis and Process
Integration; Bruggink, A., Eds.; Kluwler: Dordrecht, The Netherlands, 2001.
Tetrahedron Lett. 1999, 40, 1025. (h) Furman, B.; Thurmer, R.; Kaluza, Z.;
Lysek, R.; Voelter, W.; Chmielewski, M. Angew. Chem, Int. Ed. 1999, 38,
1121.
(8) (a) Campbell, M. M.; Nelson, K. H.; Cameron, A. F. J. Chem. Soc.,
Chem. Commun. 1979, 532. (b) Arnoldi, A.; Merlini, L.; Scaglioni, L.
J. Heterocycl. Chem. 1987, 75.
DOI: 10.1021/jo900821b
r
Published on Web 07/02/2009
J. Org. Chem. 2009, 74, 5687–5690 5687
2009 American Chemical Society