C. Su et al. / Tetrahedron Letters 50 (2009) 4381–4383
LA
4383
R1
R6
LA
R6
R2
R6
R5
R4
R3
O
R
O
R
R1
R2
R1
R2
R5
R3
R5
R3
H
R
Path a
-LA
LA
1
C
O LA
2
R
O
R4
R4
C
3
A
B
R3=R4=
Path
b
R3=R4=R5=R6=Me
-H+
R4=R6=H
R5=R6=Me
R1
R1
R1
R2
R2
R5
R3
R2
H+
R2=Ar
4
-LA-OH
R
R
O
LA
O
Field-Craft
R
5
D
E
Scheme 2. A plausible mechanism for the cycloadditions of VCPs with common aldehydes.
Table 2
Sequential reactions for the synthesis of indene derivativesa
2. For some reviews related to VCPs, see: (a) Poutsma, M. L.; Ibarbia, P. A. J. Am.
Chem. Soc. 1971, 93, 440; (b) Smadja, W. Chem. Rev. 1983, 83, 263; (c) Sydnes, L.
K. Chem. Rev. 2003, 103, 1133; (d) Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, A.
Chem. Rev. 2003, 103, 1213.
R
3. (a) Li, W.; Shi, M. Tetrahedron 2007, 63, 6654; (b) Liu, L. P.; Lu, J. M.; Shi, M. Org.
Lett. 2007, 9, 1303.
X
Ar
Ar
R
30% BF3.EtO2
CH2Cl2, rt
•
+
CHO
4. (a) Mizuno, K.; Maeda, H.; Sugita, H.; Nishioka, S.; Hirai, T.; Sugimoto, A. Org.
Lett. 2001, 3, 581; (b) Mizuno, K.; Sugita, H.; Hirai, T.; Maeda, H.; Otsuji, Y.;
Yasuda, M.; Hashiguchi, M.; Shima, K. Tetrahedron Lett. 2001, 42, 3363; (c) Shi,
M.; Lu, J. M.; Xu, G. C. Tetrahedron Lett. 2005, 46, 4745; (d) Su, C. L.; Huang, X.;
Liu, Q. Y. J. Org. Chem. 2008, 73, 6421; (e) Li, W.; Shi, M. J. Org. Chem. 2008, 73,
4151.
Ar
1
2
4
Entry
VCP 1 (R1/R2)
R (2)
Time (h)
Yield of 4b (%)
1
2
3
4
5
6
1a
1a
1a
1a
1a
1c
p-OMeC6H4 (2g)
p-CH3C6H4 (2h)
o-OMeC6H4 (2i)
2d
2a
2g
24
36
36
48
24
60
4a, 61
4b, 57
4c, 36
4d, 29c
4e, 5d
4f, 53
5. (a) Lu, J. M.; Shi, M. Org. Lett. 2006, 8, 5317; (b) Lu, J. M.; Shi, M. Org. Lett. 2007,
9, 1805; (c) Lu, J. M.; Shi, M. J. Org. Chem. 2008, 73, 2206; (d) Huang, X.; Su, C.
L.; Liu, Q. Y.; Song, Y. T. Synlett 2008, 229; (e) Shi, M.; Yao, L. F. Chem. Eur. J.
2008, 14, 8725; (f) Lu, J. M.; Zhu, Z. B.; Shi, M. Chem. Eur. J. 2009, 15, 963; (g) Li,
W.; Shi, M. J. Org. Chem. 2009, 74, 856; (h) Li, W.; Shi, M. Org. Biomol. Chem.
2009, 7, 1775.
6. Su, C. L.; Huang, X. Adv. Synth. Catal. 2009, 351, 135.
a
7. Typical procedure for synthesis of polysubstituted tetrahydrofuran 3: Under an
atmosphere of dry nitrogen, BF3ꢀEt2O (0.09 mmol) was added to a solution of
aldehyde 2 (0.36 mmol) in 2 mL of dry CH2Cl2 at ꢁ10 °C. Then a solution of VCP
1 (0.3 mmol) in 2 mL CH2Cl2 was added slowly. The progress of the reaction was
monitored by TLC, and the mixture was stirred until the starting material
disappeared. The reaction mixture was quenched with 5 mL of water and
extracted with EtOAc (3 ꢂ 5 mL). The combined organic layers were dried over
anhydrous MgSO4. Evaporation and column chromatography on silica gel
Unless otherwise specified, the reaction was carried out using 1 (0.3 mmol), 2
(0.36 mmol), and BF3ꢀEtO2 (0.09 mmol) in CH2Cl2.
b
Isolated yields.
Compound 3d was obtained in 32% yield.
Compound 3a was obtained in 71% yield.
c
d
afforded 3. Spectral data for 3a: 1H NMR (400 MHz, CDCl3):
d 8.17 (d,
Acknowledgments
J = 8.8 Hz, 2H), 7.41 (d, J = 9.2 Hz, 2H), 7.17ꢁ7.32 (m, 6H), 7.12 (t, J = 7.2 Hz,
2H), 6.88 (d, J = 7.2 Hz, 2H), 5.15 (s, 1H), 1.67 (s, 3H), 1.62 (s, 3H), 1.35 (s, 3H),
1.22 (s, 3H); 13C NMR (100 MHz, CDCl3): d 21.1, 25.0, 28.5, 29.1, 79.4, 81.6, 123.6,
126.9, 127.6, 127.8, 128.3, 128.7, 128.7, 129.7, 137.2, 140.4, 142.3, 142.9, 147.1,
151.8; IR (neat): 2967, 1598, 1517, 1343, 1266, 1010, 762, 734, 699 cmꢁ1. MS
(70 eV, EI) m/z: 425 (M+). HRMS (EI): m/z calcd for C28H27NO3 (M+): 425.1991.
Found, 425.1986.
We are grateful to the National Natural Science Foundation of
China (Project Nos. 20732005, 20872127, and J0830413) and Na-
tional Basic Research Program of China (973 Program,
2009CB825300), and CAS Academician Foundation of Zhejiang
Province for financial support.
8. Typical procedure for synthesis of indene derivatives 4: Under an atmosphere of
dry nitrogen, BF3ꢀEt2O (0.09 mmol) was added to a solution of aldehyde 2
(0.36 mmol) in 2 mL of dry CH2Cl2 at rt. Then a solution of VCP 1 (0.3 mmol) in
2 mL CH2Cl2 was added slowly. The progress of the reaction was monitored by
TLC, and the mixture was stirred until the starting material disappeared. The
reaction mixture was quenched with 5 mL of water and extracted with EtOAc
(3 ꢂ 5 mL). The combined organic layers were dried over anhydrous MgSO4.
Evaporation and column chromatography on silica gel afforded 4. Spectral data
for 4a: 1H NMR (400 MHz, CDCl3): d 7.50 (d, J = 7.6 Hz, 2H), 7.10ꢁ7.43 (m, 7H),
6.95 (d, J = 8.4 Hz, 2H), 6.75 (d, J = 8.8 Hz, 2H), 4.98 (s, 1H), 4.63 (s, 1H), 4.45 (s,
1H), 3.76 (s, 3H), 1.76 (s, 3H), 1.51 (s, 3H), 1.10 (s, 3H); 13C NMR (100 MHz,
CDCl3): d 21.5, 22.2, 23.2, 55.1, 57.3, 113.4, 115.5, 119.8, 123.9, 125.1, 126.5,
126.9, 128.2, 128.5, 129.6, 131.5, 131.6, 131.6, 136.1, 140.2, 144.5, 145.7, 147.5,
148.6, 158.1; IR (neat): 2956, 2922, 2852, 1606, 1510, 1460, 1248, 1034, 756,
700 cmꢁ1. MS (70 eV, EI) m/z: 392 (M+). HRMS (EI): m/z calcd for C29H28O (M+):
392.2140. Found, 392.2138.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. For synthesis of vinylidenecyclopropanes, see: (a) Isagawa, K.; Mizuno, K.;
Sugita, H.; Otsuji, Y. J. Chem. Soc., Perkin Trans. 1 1991, 2283. and references
therein; (b) Al-Dulayymi, J. R.; Baird, M. S. J. Chem. Soc., Perkin Trans. 1994, 1,
1547; (c) Maeda, H.; Hirai, T.; Sugimoto, A.; Mizuno, K. J. Org. Chem. 2003, 68,
7700.