2262
B. Deb, D.K. Dutta / Polyhedron 28 (2009) 2258–2262
compound was recrystallised from dichloromethane/n-hexane to
give the complex ‘1’ (640 mg, 87%)
Appendix A. Supplementary data
IR (KBr, cmꢁ1): 2049, 1973 [ (P–O)]. 1H NMR
m(CO)]. 1187 [m
CCDC 683610 and 707430 contain the supplementary crystallo-
graphic data (O\O) and (1). These data can be obtained free of
from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; e-mail:
(CDCl3, ppm): d 6.53–7.92 (m, 30H, Ph), 1.74 (s, 3H, CH3), 1.82 (s,
3H, CH3). 13C NMR (CDCl3, ppm): d 152.78–122.13 (Ar), d 33.59,
34.20 (CH3), 195.64 (CO). 31P{1H} NMR (CDCl3, ppm): d 41.96 [s,
P(v)]. Anal. Calc for C41H32Cl2O5P2Ru: C, 57.40; H, 3.73. Found: C,
56.85; H, 3.65%.
3.5. X-ray structural analysis
References
[1] D. Braga, F. Grepioni, K. Biradha, V.R. Pedireddy, G.R. Desiraju, J. Am. Chem. Soc.
117 (1995) 3157.
[2] G.R. Desiraju, Crystal Engineering: The Design of Organic Solids, Elsevier,
Amsterdam, 1989.
Single crystals of O\O and 1 were grown by layering a CH2Cl2
solution of O\O and 1 with n-hexane. The intensity data of O\O
and 1 were collected on Bruker Smart–CCD and Rigaku Saturn
[3] J.S.Y. Wong, Y.J. Gu, L. Szeto, W.T. Wong, Cryst. Eng. Commun. 10 (2008) 29.
[4] U. Rychlewska, B. Warzajits, Acta Crystallogr., Sect. B 56 (2000) 833.
[5] B. Venkataramanan, M.A. Saifudin, V. Jagadese, V. Suresh, Cryst. Eng. Commun.
6 (2004) 284.
[6] J. Bernstein, R.E. Davis, L. Shimoni, N.L. Chang, Angew. Chem., Int. Ed. 34 (1995)
1555.
CCD, respectively with Mo Ka radiation (k = 0.71073 Å). The struc-
tures were solved with SHELXS-97 [32] and refined by full-matrix
least squares on F2 using SHELXL-97 computer program [33]. Hydro-
gen atoms were idealized by using the riding models.
Powder XRD spectra of the compound O\O were recorded on a
[7] C.F. Wang, Z.Y. Zhu, Z.X. Zhang, Z.X. Chen, X.G. Zhou, Cryst. Eng. Commun. 9
(2007) 35.
Bruker AXS D8 ADVANCE from 2 to 80 °C at 4° minꢁ1 with a step size
[8] A.S. Kumbhar, M.S. Deshpande, R.J. Butcher, Cryst. Eng. Commun. 10 (2008)
1520.
[9] D. Braga, Chem. Commun. (2003) 2751.
of 0.02° using Cu Ka source (k = 1.54 Å). Samples were prepared as
front-coated packed powders in aluminium sample holders.
[10] K. Biradha, Cryst. Eng. Commun. 5 (2003) 374.
[11] G.R. Desiraju, Chem. Commun. (2005) 2995.
4. Conclusion
[12] G.A. Jeffery, in: An Introduction to Hydrogen Bonding, Wiley, Chichester, 1997.
[13] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M.O. Keeffee, O.M. Yaghi,
Science 295 (2002) 469.
[14] D.N. Dybtsev, H. Chun, S.H. Yoon, D. Kim, K. Kim, J. Am. Chem. Soc. 126 (2004)
32.
[15] C. Boskovic, E.K. Brechin, W.E. Streib, K. Folting, J.C. Bollinger, D.N.
Hendrickson, G. Christou, J. Am. Chem. Soc. 124 (2002) 3725.
[16] M.E. Davis, Nature 417 (2002) 813.
In this paper, the synthesis of ruthenium(II) carbonyl complex
(1) containing a xantphos dioxide chelating ligand along with the
structural characterization of the ligand (O\O) and its ruthenium
complex (1) have been carried out. The compound O\O forms a
three-dimensional network structure by extending infinitely via
[17] M. Eddaoudi, H. Li, O.M. Yaghi, J. Am. Chem. Soc. 122 (2000) 1391.
[18] M. Shu, C. Tu, W. Xu, H. Jin, J. Sun, Cryst. Growth Des. 6 (2006) 1890.
[19] C.D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 127 (2005) 8940.
[20] B. Chen, F.R. Fronczek, A.W. Maverick, Inorg. Chem. 43 (2004) 8209.
[21] D.K. Kumar, A. Das, P. Dastidar, Cryst. Growth Des. 7 (2007) 205.
[22] D.K. Dutta, J.D. Woollins, A.M.Z. Slawin, D. Konwar, P. Das, M. Sharma, P.
Bhattacharyya, S.M. Aucott, Dalton Trans. (2003) 2674.
[23] D.K. Dutta, J.D. Woollins, A.M.Z. Slawin, D. Konwar, M. Sharma, P.
Bhatacharyya, S.M. Aucott, J. Organomet. Chem. 691 (2006) 1229.
[24] P. Chutia, M. Sharma, P. Das, N. Kumari, J.D. Woollins, A.M.Z. Slawin, D.K. Dutta,
Polyhedron 22 (2003) 2725.
strong intermolecular C–HꢀꢀꢀO and C–Hꢀꢀꢀ
p interactions by bridging
each molecule of xantphos dioxide with water molecules to gener-
ate a solvent stabilized architecture. The ligand O\O reacts with
[Ru(CO)2Cl2]n to afford hexa-coordinated Ru(II) complex 1, which
generates three dimensional rigid network via intermolecular C–
HꢀꢀꢀO, C–HꢀꢀꢀCl and C–Hꢀꢀꢀ
p interactions resulting in high thermal
stability (>300 °C). The complex 1 exhibit an interesting intramo-
lecular OꢀꢀꢀO interactions leading to different electron donacity of
two P@O groups to the metal centre.
[25] D.K. Dutta, P. Chutia, J.D. Woollins, A.M.Z. Slawin, Inorg. Chim Acta 359 (2006)
877.
[26] B. Deb, B.J. Sarmah, B.J. Borah, D.K. Dutta, Spectrochim. Acta, Part A 72 (2009)
339.
[27] J. Fawcett, A.W.G. Platt, S. Vickers, M.D. Ward, Polyhedron 23 (2004) 2561.
[28] M.L. Berch, A. Davison, J. Inorg. Nucl. Chem. 35 (1973) 3763.
[29] R. Colton, R.H. Farthing, Aust. J. Chem. 20 (1967) 1283.
[30] R.J. Irving, J. Chem. Soc. (1956) 2879.
[31] M.J. Cleare, W.P. Griffith, J. Chem. Soc. A (1969) 372.
[32] G.M. Sheldrick, SHELXS 97, Program for the Solution of Crystal Structure,
University of Gottingen, Germany, 1997.
[33] G.M. Sheldrick, SHELXL 97, Program for the Refinement of Crystal Structure,
University of Gottingen, Germany, 1997.
Acknowledgement
The authors are grateful to Dr. P.G. Rao, Director, North-East
Institute of Science and Technology (CSIR), Jorhat, Assam, India,
for his kind permission to publish the work. Thanks are also due
to DST, New Delhi for a financial support (Grant: SR/S1/IC-05/
2006). The author B. Deb (JRF) is grateful to CSIR for providing
the fellowship.