3480
T. Rodrigues et al. / Bioorg. Med. Chem. Lett. 19 (2009) 3476–3480
12. Markley, L.; Van Heertum, J.; Doorenbos, H. J. Med. Chem. 1972, 15, 1188.
13. Fry, M.; Williams, R. B. Biochem. Pharmacol. 1984, 33, 229.
14. Yeates, C. L.; Batchelor, J. F.; Capon, E. C.; Cheesman, N. J.; Fry, M.; Hudson, A. T.;
Pudney, M.; Trimming, H.; Woolven, J.; Bueno, J. M.; Chicharro, J.; Fernández,
E.; Fiandor, J. M.; Gargallo-Viola, D.; Heras, F. G.; Herreros, E.; León, M. L. J. Med.
Chem. 2008, 51, 1845.
15. Raynes, K. J.; Stocks, P. A.; O’Neill, P. M.; Park, K.; Ward, S. A. J. Med. Chem. 1999,
42, 2747.
16. 3-Amino-4-chloro-1-ethylpyridinium triflate, 7b: To a solution of 5b (0.77 mmol,
occupying the hydrophobic channel leading to the Qo centre and
interacting with aliphatic and aromatic side chains of Ile-125, Ile-
147, Leu-150, Phe-151, Leu-275, Met-295 and Phe-296, that is,
similar to GW844520 (Fig. 3B, purple). Interestingly, the iminium
hydrogen atom of 4l is in proximity (2.8 Å) to the nitrogen atom
of His-181, which is compatible with an hydrogen bond. The most
potent compound against the W2 strain, 4m, presented an identi-
cal docking pose to 4l, where the (1H-pyridin-4-ylidene)amine
moiety is occupying the hydrophobic channel (Fig. 3B, blue). The
iminium hydrogen atom of 4m is 4.2 Å away from the oxygen atom
of Glu-272, which is compatible with a water-mediated hydrogen
bond. These results support the hypothesis that (1H-pyridin-4-yli-
dene)amines 4 can bind to the Qo site in cytochrome b, promoting
interactions with the residues that define the hydrophobic channel
leading to the Qo centre in a similar way to 4-pyridone GW844520,
a known bc1 complex inhibitor.30
1 M equiv) in dry toluene (1.5 mL) was added ethyl triflate (0.80 mmol, 103
lL,
1.04 M equiv). The reaction mixture was left reacting at room temperature for
24 h. The precipitate was collected and washed with diethyl ether to afford 7b
as a brown solid: 95%, mp 56–58 °C. 1H NMR (DMSO-d6, 400.13 MHz) d 1.48
(3H, t, J = 7.2, CH3); 4.46 (2H, q, J = 7.2, CH2); 6.92 (2H, br s, NH); 8.04 (1H, d,
J = 6.4, Pyr-H3); 8.20 (1H, d, J = 6.4, Pyr-H2); 8.25 (1H, s, Pyr-H20).
N-[(4E)-3-Amino-1-ethylpyridin-4(1H)-ylidene]-3-{2-[4-(trifluoromethoxy)phenyl]-
ethyl}aniline, 4p: Pyridinium triflate 7b (0.80 mmol, 1 M equiv) and aniline 13e
(0.92 mmol, 1.15 M equiv) were dissolved in ethanol absolute (3.5 mL/mmol).
TEA (0.92 mmol, 1.15 M equiv) was added to the solution that was kept under
reflux temperature for 24 h. The solvent was evaporated under reduced
pressure and the crude product purified by flash chromatography
CH2Cl2:MeOH (9.5:0.5) to afford 4p as a yellow oil: 70%. 1H NMR (CD3OD,
400.13 MHz) d 1.53 (3H, t, J = 7.2, CH3); 2.99 (4H, br s, CH2CH2); 4.23 (2H, q,
J = 7.2, NCH2); 6.85 (1H, d, J = 6.8, Pyr-H3); 7.10 (1H, s, Ar-H); 7.15-7.19 (4H, m,
Ar-H); 7.27 (2H, d, J = 7.6, Ar-H); 7.41 (1H, t, J = 7.6, Ar-H); 7.78 (1H, d, J = 7.6,
Pyr-H2); 7.82 (1H, s, Pyr-H20). 13C NMR (CD3OD, 100.61 MHz) d 15.13, 36.47,
37.00, 53.85, 105.39, 120.55, 121.57, 122.01, 124.14, 124.67, 126.68, 129.62,
129.86, 134.00, 134.20, 137.54, 140.58, 143.47, 145.05, 147.36. ESI/MS (m/z):
402.53 (M+H+). Anal. Calcd for C22H22F3N3OꢂCF3SO3H: C, 50.09; H, 4.20; N,
7.62; S, 5.81. Found: C, 50.34; H, 4.26; N, 7.66; S, 5.86.
In conclusion, a series of (1H-pyridin-4-ylidene)amines, 4,
containing an lipophilic side-chain at the imine nitrogen atom have
been synthesised as potential isosteres of 4(1H)-pyridone antimal-
arials. Some of these (1H-pyridin-4-ylidene)amines display sig-
nificant antiplasmodial activity against the P. falciparum W2
CQ-resistant and FCR3 atovaquone-resistant strains, with IC50
ranging from 0.9 to 7 lM. Docking studies suggest that (1H-pyri-
17. Hwang, J.-J.; Lin, R.-L.; Shieh, R.-L.; Jwo, J.-J. J. Mol. Catal. A: Chem. 1999, 142,
125.
18. Mandal, P. K.; McMurray, J. S. J. Org. Chem. 2007, 72, 6599.
19. Rodrigues, T.; Moreira, R.; Lopes, F. Acta Crystallogr., Sect. E 2009, 65, o283.
20. Semenov, A.; Olson, J. E.; Rosenthal, P. J. Antimicrob. Agents Chemother. 1998, 42,
2254.
din-4-ylidene)amines may bind to the Qo site of bc1 complex, and
thus are suitable scaffolds that might find further applicability in
the design of antimalarials.
Acknowledgments
21. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
22. Geometries of compounds 2–4m were energy-minimised using density
functional theory. These calculations were performed with the B3LYP hybrid
functional and the 6-31G(d,p) basis set implemented in GAUSSIAN03 software
package.23 After geometry optimisations, partial charges were included using
Amber’s Antechamber module24 (included with Chimera software).25
23. Frisch, M. J. et al., GAUSSIAN 03, Revision C.02; Gaussian: Wallingford, CT, 2004.
24. Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. J. Mol. Graph. Model. 2006, 25,
247.
This work was supported by Fundação para a Ciência e Tecnolo-
gia (FCT, Portugal); T.R. acknowledges FCT for the Ph.D. grant SFRH/
BD/30689/2006. P.J.R. is a Doris Duke Charitable Foundation Dis-
tinguished Clinical Scientist.
25. UCSF Chimera package from the Resource for Biocomputing, Visualisation, and
Informatics at the University of California, San Francisco (supported by NIH
P41 RR-01081); Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S.,
Greenblatt, D. M., Meng, E. C., Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605.
26. Portmann, S.; Lüthi, H. T. Chimia 2000, 54, 766.
Supplementary data
Supplementary data associated with this article can be found, in
27. Jones, G.; Willet, P.; Glen, R. C. J. Mol. Biol. 1995, 245, 43.
28. Kessl, J. J.; Lange, B. B.; Merbitz-Zahradnik, T.; Zwicker, K.; Hill, P.; Meunier, B.;
Palsdottir, H.; Hunte, C.; Meshnick, S.; Trumpower, B. L. J. Biol. Chem. 2003, 278,
31312.
References and notes
29. Molecular docking studies of compounds 2–4 into cytochrome bc1 were
performed with the flexible GOLD (Genetic Optimisation for Ligand Docking,
v3.0.1; CCDC Software Ltd: Cambridge, UK) docking program using GoldScore
scoring function. For each ligand 5000–10,000 docking runs were performed
1. Martinelli, A.; Moreira, R.; Cravo, P. V. L. Mini-Rev. Med. Chem. 2008, 8, 201.
2. Fidock, D. A.; Eastman, R. T.; Ward, S. A.; Meshnick, S. R. Trends Parasitol. 2008,
24, 537.
3. Wiesner, J.; Ortmann, R.; Jomaa, H.; Schlitzer, M. Angew. Chem., Int. Ed. 2003, 42,
5274.
4. Mather, M. W.; Henry, K. W.; Vaidya, A. B. Curr. Drug Targets 2007, 8, 49.
5. Painter, H. J.; Morrisey, J. M.; Mather, M. W.; Vaidya, A. B. Nature 2007, 446, 88.
6. Bloland, P. B. Drug Resistance in Malaria; WHO: Geneva, 2001 (WHO/CDS/CSR/
DRS/2001.4.).
7. Kessl, J. J.; Meshnick, S. R.; Trumpower, B. L. Trends Parasitol. 2007, 23, 494.
8. Mather, M. W.; Darrouzet, E.; Valkova-Valchanova, M.; Cooley, J. W.; McIntosh,
M. T.; Daldal, F.; Vaidya, A. B. J. Biol. Chem. 2005, 280, 27458.
9. Hunte, C.; Palsdottir, C.; Trumpower, B. L. FEBS Lett. 2003, 545, 39.
10. Fisher, N.; Bray, P. G.; Ward, S. A.; Biagini, G. A. Trends Parasitol. 2007, 23, 305.
11. Korsinczky, M.; Chen, N.; Kotecka, B.; Saul, A.; Rieckmann, K.; Cheng, Q.
Antimicrob. Agents Chemother. 2000, 44, 2100.
(with
a population size of 100; 100,000 genetic algorithm operations; 5
islands).
30. Biagini, G. A.; Fischer, N.; Berry, N.; Stocks, P. A.; Meunier, B.; Williams, D. P.;
Bonar-Law, R.; Bray, P. G.; Owen, A.; O’Neill, P. M.; Ward, S. A. Mol. Pharmacol.
2008, 73, 1347.
31. Kessl, J. J.; Ha, K. H.; Merrit, A. K.; Lange, B. B.; Hill, P.; Meunier, B.; Meshnick, S.
R.; Trumpower, B. L. J. Biol. Chem. 2005, 280, 17142.
32. Kessl, J. J.; Hill, P.; Lange, B. B.; Meshnick, S.; Meunier, B.; Trumpower, B. L. J.
Biol. Chem. 2004, 279, 2817.
33. Lange, C.; Hunte, C. Proc. Natl. Acad. Sci. 2003, 99, 2800.
34. Kessl, J. J.; Moskalev, N. V.; Gribblr, G. W.; Nasr, M.; Meshnick, S. R.;
Trumpower, B. L. Biochim. Biophys. Acta 2007, 1767, 319.