B. S. Nam et al. / Bioorg. Med. Chem. Lett. 19 (2009) 3517–3520
3519
Table 1
eral, urea compounds 1a–d possessed slightly potent activities as
compared to amide compounds 1e–h. Positional effect according
to p- or m-orientation of middle benzene ring did not make any
significant difference of activity. Acetylamino compound 1h with
m-orientation displayed very good selectivity against HS27 fibro-
blast cell line as a control in addition to high potency against
melanoma cell line. However, conversion of the amino group to
acetylamino group on the quinoline nucleus did not show a
meaningful trend.
Shown in Table 2, some of quinolinyloxymethylphenyl deriva-
tives 1i–p with acetylamino and m-oriented structure showed
superior antiproliferative activities to Sorafenib. Furthermore, they
possessed excellent selectivity against melanoma compared to
fibroblast cell lines. In particular, compounds 1k and 1l having
electron-withdrawing groups on the terminal benzene nucleus
Antiproliferative activity of quinolinyloxyphenyl derivatives 1a–h
Cl
H
N
H
N
H
N
N
N
CF3
Cl
R
R
CF3
O
O
O
O
1a-d
1e-h
Compd
Orientation
R
IC50
(
l
M)
A375
HS27
1a
1b
1c
1d
1e
1f
1g
1h
Sorafenib
p-Phenyl
p-Phenyl
m-Phenyl
m-Phenyl
p-Phenyl
p-Phenyl
m-Phenyl
m-Phenyl
NH2
CH3CONH
NH2
CH3CONH
NH2
CH3CONH
NH2
3.74 0.16
4.19 2.13
2.56 0.09
2.32 0.54
5.69 0.13
3.14 0.36
6.73 0.24
3.49 0.35
5.58
6.71 1.62
6.02 0.29
10.39 1.91
5.68 0.18
7.63 1.01
5.47 0.74
>20
exhibited excellent antiproliferative activities (0.77 and 0.79
respectively) with IC50 values in the nanomolar range.
lM,
CH3CONH
>20
7.85
The representative compound 1k was screened against V600E-
b-Raf enzyme in vitro using cascade assay system. However, com-
pound 1k did not show a meaningful b-Raf inhibitory activity.
Accordingly, the selectivity profile of 1k was assessed against a pa-
nel of 30 protein kinases at a single concentration of 10 lM to find
kinase target. This compound exhibited good selectivity profile for
c-Raf and Abl inhibition with significant activity over other kinases
tested. Verification of mode of action is under way.
In conclusion, a series of aminoquinoline derivatives based on
the structural features of Sorafenib showed potent antiproliferative
activities against A375 human melanoma cell line. In our series,
quinolinyloxymethylphenyl compounds 1k and 1l exhibited both
potent activity and excellent selectivity compared to Sorafenib.
These results suggest that aminoquinoline derivatives have poten-
tials as a therapeutic agent for treatment of melanoma.
Table 2
Antiproliferative activity of quinolinyloxymethylphenyl derivatives 1i–p
N
O
H
N
O
N
H
R
O
1i-p
Compds
1i
R
IC50 (lM)
A375
HS27
>20
CF3
Cl
1.30 0.08
1.28 0.19
0.77 0.07
0.79 0.02
Acknowledgments
We are grateful to the Korea Institute of Science and Technology
(KIST) for financial support.
CF3
CF3
1j
>20
>20
>20
References and notes
1k27
1. Gruijl, F. R. Pigment Cell Res. 2003, 16, 591.
2. Garbe, C.; Hauschild, A.; Volkenandt, M.; Schadendorf, D.; Stolz, W.; Reinhold,
U.; Kortmann, R. D.; Kettelhack, C.; Frerich, B.; Keilholz, U.; Dummer, R.;
Sebastian, G.; Tilgen, W.; Schuler, G.; Mackensen, A.; Kaufmann, R. Melanoma
Res. 2007, 17, 393.
3. Carlson, J. A.; Ross, J. S.; Slominski, A.; Linette, G.; Mysliborski, J.; Hill, J.; Mihm,
M., Jr. J. Am. Acad. Dermatol. 2005, 52, 743.
4. Buzaid, A. C.; Anderson, C. M. Curr. Oncol. Rep. 2000, 2, 322.
5. Middleton, M. R.; Grob, J. J.; Aaronson, N.; Fierlbeck, G.; Tilgen, W.; Seiter, S.;
Gore, M.; Aamdal, S.; Cebon, J.; Coates, A.; Dreno, B.; Henz, M.; Schadendorf, D.;
Kapp, A.; Weiss, J.; Fraass, U.; Statkevich, P.; Muller, M.; Thatcher, N. J. Clin.
Oncol. 2000, 18, 158.
6. Bedikian, A. Y.; Millward, M.; Pehamberger, H.; Conry, R.; Gore, M.; Trefzer, U.;
Pavlick, A. C.; DeConti, R.; Hersh, E. M.; Hersey, P.; Kirkwood, J. M.; Haluska, F.
G. J. Clin. Oncol. 2006, 24, 4738.
7. Lawson, D. H. Cancer Control. 2005, 12, 236.
8. Rosenburg, S. A.; Lotze, M. T.; Yang, J. C.; Aebersold, P. M.; Linehan, W. M.;
Seipp, C. A.; White, D. E. Ann. Surg. 1989, 210, 474.
9. Atkins, M. B.; Lotze, M. T.; Dutcher, J. P.; Fisher, R. I.; Weiss, G.; Margolin, K.;
Abrams, J.; Sznol, M.; Parkinson, D.; Hawkins, M.; Paradise, C.; Kunkel, L.;
Rosenberg, S. A. J. Clin. Oncol. 1999, 17, 2105.
CF3
CF3
1l27
NO2
CF3
1m
1n
>20
>20
>20
>20
N
O
CF3
N
N
10. Fletcher, W. S.; Daniels, D. S.; Sondak, V. K.; Dana, B.; Townsend, R.; Hynes, H.
E.; Hutchins, L. F.; Pancoast, J. R. Am. J. Clin. Oncol. 1993, 16, 359.
11. Anderson, C. M.; Buzaid, A. C.; Legha, S. S. Oncology 1995, 9, 1149.
12. Serrone, L.; Zeuli, M.; Sega, F. M.; Cognetti, F. J. Exp. Clin. Cancer Res. 2000, 19, 21.
13. Frossman, D.; Altieri, D. C. Cancer Metastasis Rev. 2001, 20, 3.
14. Hayes, M. T.; Bartley, J.; Parsons, P. G.; Eaglesham, G. F.; Prakash, A. S.
Biochemistry 1997, 36, 10646.
15. Chang, J.; Atkinson, H.; A‘Hern, R.; Lorentzos, A.; Gore, M. E. Eur. J. Cancer 1994,
A, 2093.
16. Franciosi, V.; Cocconi, G.; Michiara, M.; Di Costanzo, F.; Fosser, V.; Tonato, M.;
Carlini, P.; Boni, C.; Di Sarra, S. Cancer 1999, 85, 1599.
1o
2.12 0.14
>20
>20
7.85
N
Cl
N
O
1p
>20
17. Middleton, M. R.; Lorigan, P.; Owen, J.; Ashcroft, L.; Lee, S. M.; Harper, P.;
Thatcher, N. Br. J. Cancer 2000, 82, 1158.
Sorafenib
5.58