coumarins may provide access to compounds like warfarin and
also allow the synthesis of a wide variety of 3-alkylcoumarins
for biological screening.
Table 1. Decarboxylative Coupling of Coumarins
To begin, 4a was synthesized and treated with Pd(PPh3)4 in
dry CH2Cl2 (Scheme 1). It was gratifying to find the reaction
Scheme 1
went to 100% conversion, allowing 3-allylcoumarin 5a to be
isolated in 73% yield. In addition to product (5a), the reaction
forms ca. 10% 6-nitrocoumarin, which results from protonation
of a putative coumarin anion equivalent.6 It is particularly
noteworthy that the decarboxylative metalation took place at
just 50 °C. While decarboxylation of 3-carboxycoumarins can
be effected by heating with strong acid or base, decarboxylative
metalation under neutral conditions is difficult. For example,
copper-catalyzed decarboxylation of a related 2-carboxycou-
marin takes place at 248 °C in refluxing quinoline.6,7 Moreover,
the allylation took place without the need for preformed
organometallics that are typically required for the allylation
of sp2 carbons,8,9 and it is more efficient than typical
syntheses of 3-allylcoumarins.10
Next, a range of coumarins were subjected to our standard
conditions for the coupling. As can be seen in Table 1, the yields
of the coupling are generally good. The reaction is compatible
with electron-donating and electron-withdrawing functional
(4) The decarboxylative allylation of silylenol ethers has been reported.
(a) Tsuji, J.; Ohashi, Y.; Minami, O. Tetrahedron Lett. 1987, 28, 2397. (b)
Snider, B. B.; Buckman, B. O. J. Org. Chem. 1992, 57, 4883. (c) Coates,
R. M.; Sandefur, L. O.; Smillie, R. D. J. Am. Chem. Soc. 1975, 97, 1619.
(5) (a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. ReV. 2003,
103, 893. (b) Estevez-Craun, A.; Gonzalez, A. G. Nat. Prod. Rep. 1997,
465. (c) Ngameni, B.; Touaibia, M.; Patnam, R.; Belkaid, A.; Sonna, P.;
Ngadjui, B. T.; Annabi, B.; Roy, R. Phytochemistry 2006, 67, 2573. (d)
Chun, K.; Park, S.-K.; Kim, H. M.; Choi, Y.; Kim, M.-H.; Park, C.-H.;
Joe, B.-Y.; Chun, T. G.; Choi, H.-M.; Lee, H.-Y.; Hong, S. H.; Kim, M. S.;
Nam, K.-Y.; Han, G. Biorg. Med. Chem. 2008, 16, 530.
a Isolated yield using 10 mol % of Pd(PPh3)4, 50 °C, 12-15 h. b At
room temperature.
groups. This fact argues against simple electrophilic allylation
of the coumarin.11 While coumarins with oxygen donors are
excellent substrates, an amine-containing substrate (entry 9)
provides a relatively low yield of product. Importantly, aryl
bromides are tolerated, allowing tandem reactions involving
decarboxylative coupling and standard cross-coupling chemistry.
Lastly, a thiocoumarin substrate reacts similarly to the coumarin
substrate, providing a 63% yield of 3-allyl thiocoumarin
(Scheme 2).
(6) Worden, L. R.; Kaufman, K. D.; Weis, J. A.; Schaaf, T. K. J. Org.
Chem. 1969, 34, 2311.
(7) (a) Adams, R.; Bockstahler, T. E. J. Am. Chem. Soc. 1952, 74, 5346.
(b) Posakony, J.; Hirao, M.; Stevens, S.; Simon, J. A.; Bedalov, A. J. Med.
Chem. 2004, 47, 2635
.
(8) Cross-couplings of coumarins: (a) Zhang, L.; Meng, T.; Fan, R.;
Wu, J. J. Org. Chem. 2007, 72, 7279. (b) Schiedel, M.-S.; Briehn, C. A.;
Bauerle, P. J. Organomet. Chem. 2002, 653, 200. (c) Wu, J.; Yun, L.; Yang,
Z. J. Org. Chem. 2001, 66, 3642
.
(9) Allylation of sp2-carbon nucleophiles: (a) Kayaki, Y.; Koda, T.;
Takao, I. Eur. J. Org. Chem. 2004, 4989. (b) Del Valle, L.; Stille, J. K.;
Hegedus, L. S. J. Org. Chem. 1990, 55, 3019. (c) Kobayashi, Y.; Watatani,
K.; Tokoro, Y. Tetrahedron Lett. 1998, 29, 7533. (d) Tseng, C. C.; Paisley,
Scheme 2
S. D.; Goering, H. L. J. Org. Chem. 1986, 51, 2884
.
(10) (a) Ahluwalia, V. K.; Prakash, C.; Gupta, R. Synthesis 1980, 48.
(b) Mali, R. S.; Tilve, S. G.; Yeola, S. N.; Manekar, A. R. Heterocycles
1987, 26, 121.
(11) Electrophilic allylation of coumarins is generally only successful
with electron-rich coumarins, and the regioselectivity favors allylation of
the benzenoid ring. (a) Ramachandra, M. S.; Subbaraju, G. V. Synth.
Commun. 2006, 36, 3723. (b) Cairns, N.; Harwood, L. M.; Astles, D. P.
J. Chem. Soc., Perkin Trans. 1 1994, 3101.
Next, we turned our attention to the investigation of the
coupling of substituted allyl electrophiles with coumarins (Table
Org. Lett., Vol. 11, No. 15, 2009
3435