Figure 1. Structure of Stat3 inhibitors and their corresponding phosphatase-stable, cell-permeable prodrugs.
destroying the ability of the inhibitor to bind to the SH2
domain.3 Phosphonates, difluoromethylphosphonates, mal-
onates, and heterocycles have been employed as phosphate
surrogates to overcome this deficit.4,5 Although a large
number of inhibitors of the SH2 domains of Grb2, Src, Lck,
p85PI3K, and others have been reported, relatively few have
demonstrated ability to cross cell membranes and inhibit their
targets.3 In several examples, passive diffusion into cells was
accomplished by capping phosphate or phosphonate oxygen
atoms with enzyme-cleavable groups. S-Acyl-2-thioethyl
(SATE),6,7 amino acid phosphoramidate,8,9 nitrofurfuryl
phosphoramidate,10 and pivaloyloxymethyl (POM)11-13 pro-
drug approaches have been reported.
values of 162 and 138 nM, respectively, in a fluorescence
polarization assay, as compared to 290 nM for the starting
peptide (pCinn ) 4-phosphoryloxycinnamate, Haic ) 5-amino-
1,2,4,5,6,7-hexahydro-4-oxoazepino[3,2,1-hi]indole-2-car-
boxylic acid). Key to increased affinity was replacement of
phosphotyrosine with pCinn. To stabilize against phosphatase
inactivation, the phosphate group was replaced with the
phosphonodifluoromethyl group16 (F2PmCinn). To impart
cell permeability, the POM prodrug method was employed.
This approach required the development of a POM phospho-
nodiester of F2PmCinn. We report here the synthesis of a
F2Pm(POM2)Cinn building block and its use in the prepara-
tion of cell-permeable prodrug analogues of PM-6 (BP-PM6)
and PM-66F (BP-PM279G) (Figure 1). We demonstrate that
they can indeed enter cells and inhibit the phosphorylation
of Stat3.
With the use of conformational constraints, we have
converted our lead peptide inhibitor of Stat3, Ac-pTyr-Leu-
Pro-Gln-Thr-Val-NH2, into high-affinity peptidomimet-
ics.14,15 Of these, pCinn-Haic-Gln-NHBn (PM-6) and pCinn-
Leu-Pro-Gln-NHBn (PM-66F) (Figure 1) exhibited IC50
Stankovic et al.11 synthesized POM prodrugs of phospho-
nodifluoromethylphenylalanine-containing inhibitors of the
Src SH2 domain. It was reported that only one POM group
(6) Liu, W. Q.; Vidal, M.; Mathe, C.; Perigaud, C.; Garbay, C. Bioorg.
Med. Chem. Lett. 2000, 10, 669–72
(7) Liu, W. Q.; Vidal, M.; Olszowy, C.; Million, E.; Lenoir, C.; Dhotel,
H.; Garbay, C. J. Med. Chem. 2004, 47, 1223–33
(8) Gay, B.; Suarez, S.; Caravatti, G.; Furet, P.; Meyer, T.; Schoepfer,
J. Int. J. Cancer 1999, 83, 235–241
(9) Gay, B.; Suarez, S.; Weber, C.; Rahuel, J.; Fabbro, D.; Furet, P.;
Caravatti, G.; Schoepfer, J. J. Biol. Chem. 1999, 274, 23311–23315
.
(12) McKinney, J.; Raimundo, B. C.; Cushing, T. D.; Yoshimura, H.;
Ohuchi, Y.; Hiratate, A.; Fukushima, H.; Xu, F.; Peto, C. Application: WO,
2001, p 85 pp.
.
.
(13) McKinney, J.; Raimundo, B. C.; Cushing, T. D.; Yoshimura, H.;
Ohuchi, Y.; Hiratate, A.; Fukushima, H. Application: US, 2002, p 31 pp.
(14) Mandal, P. K.; Heard, P. A.; Ren, Z.; Chen, X.; McMurray, J. S.
Bioorg. Med. Chem. Lett. 2007, 17, 654–656.
.
(10) Garrido-Hernandez, H.; Moon, K. D.; Geahlen, R. L.; Borch, R. F.
J. Med. Chem. 2006, 49, 3368–76.
(15) Mandal, P. K.; Limbrick, D.; Coleman, D. R.; Dyer, G. A.; Ren,
Z.; Birtwistle, J. S.; Xiong, C.; Chen, X.; Briggs, J. M.; McMurray, J. S.
J. Med. Chem. 2009, 52, 2429–42.
(11) Stankovic, C. J.; Surendran, N.; Lunney, E. A.; Plummer, M. S.;
Para, K. S.; Shahripour, A.; Fergus, J. H.; Marks, J. S.; Herrera, R.; Hubbell,
S. E.; Humblet, C.; Saltiel, A. R.; Stewart, B. H.; Sawyer, T. K. Bioorg.
(16) Burke, T. R., Jr.; Smyth, M. S.; Otaka, A.; Nomizu, M.; Roller,
P. P.; Wolf, G.; Case, R.; Shoelson, S. E. Biochemistry 1994, 33, 6490–4.
Med. Chem. Lett. 1997, 7, 1909–1914
.
Org. Lett., Vol. 11, No. 15, 2009
3395