Journal of the American Chemical Society
Page 6 of 8
(c) Zhang, Q.; Catti, L.; Tiefenbacher, K., Catalysis inside the Hexameric
22.
(a) Bradshaw, A. P. W.; Hanson, J. R.; Nyfeler, R., Studies in
Resorcinarene Capsule. Acc. Chem. Res. 2018, 51 (9), 2107-2114; (d)
Zhang, Q.; Catti, L.; Syntrivanis, L.-D.; Tiefenbacher, K., En route to
terpene natural products utilizing supramolecular cyclase mimetics. Nat.
Prod. Rep. 2019, 36, 1619-1627; (e) Pahima, E.; Zhang, Q.; Tiefenbacher,
K.; Major, D. T., Discovering Monoterpene Catalysis Inside Nanocapsules
with Multiscale Modeling and Experiments. J. Am. Chem. Soc. 2019, 141
(15), 6234-6246.
terpenoid biosynthesis, Part 24. The formation of the carbon skeleton of the
sesquiterpenoid, dihydrobotrydial. J. Chem. Soc., Perkin Trans. 1 1981,
1469-1472; (b) Bradshaw, A. P. W.; Hanson, J. R.; Nyfeler, R.; Sadler, I.
H., Use of2H–13C n.m.r. coupling patterns in terpenoid biosynthesis. J.
Chem. Soc., Chem. Commun. 1981, (13), 649-650; (c) Bradshaw, A. P. W.;
Hanson, J. R.; Nyfeler, R.; Sadler, I. H., Studies in terpenoid biosynthesis.
Part 25. The fate of the mevalonoid hydrogen atoms in the biosynthesis of
the sesquiterpenoid, dihydrobotrydial. J. Chem. Soc., Perkin Trans. 1 1982,
2187-2192; (d) Hanson, J. R., The biosynthesis of some sesquiterpenoids.
Pure Appl. Chem. 1981, 53 (6), 1155-1162; (e) Lin, X.; Cane, D. E.,
Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces
coelicolor. Mechanism and stereochemistry of the enzymatic formation of
epi-isozizaene. J. Am. Chem. Soc. 2009, 131 (18), 6332-3.
1
2
3
4
5
6
7
8
7.
Zhang, Q.; Rinkel, J.; Goldfuss, B.; Dickschat, J. S.;
Tiefenbacher, K., Sesquiterpene Cyclisations Catalysed inside the
Resorcinarene Capsule and Application in the Short Synthesis of
Isolongifolene and Isolongifolenone. Nat. Catal. 2018, 1 (8), 609-615.
9
8.
Deligeorgopoulou, A.; Allemann, R. K., Evidence for
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Differential Folding of Farnesyl Pyrophosphate in the Active Site of
Aristolochene Synthase:ꢀ A Single-Point Mutation Converts Aristolochene
Synthase into an (E)-β-Farnesene Synthase. Biochemistry 2003, 42 (25),
7741-7747.
23.
presilphiperfolanol. Org. Lett. 2008, 10 (21), 4827-4830.
24. (a) Coates, R. M.; Ho, Z.; Klobus, M.; Wilson, S. R.,
Wang, S. C.; Tantillo, D. J., Prediction of a new pathway to
9.
(a) Major, D. T.; Freud, Y.; Weitman, M., Catalytic control in
Stereochemistry and Reactions of Presilphiperfolanol: A Branch Point
Marker in Triquinane Sesquiterpene Biogenesis. J. Am. Chem. Soc. 1996,
118 (39), 9249-9254; (b) Davis, C. E.; Duffy, B. C.; Coates, R. M., Total
synthesis of (+/-)-cameroonan-7alpha-ol and biomimetic rearrangements to
related nopsane sesquiterpenes. J. Org. Chem. 2003, 68 (18), 6935-6943;
(c) Weyerstahl, P.; Marschall, H.; Seelmann, I.; Jakupovic, J.,
Cameroonane, Prenopsane and Nopsane, Three New Tricyclic
Sesquiterpene Skeletons. Eur. J. Org. Chem. 1998, 1998 (6), 1205-1212;
(d) Barquera-Lozada, J. E.; Cuevas, G., Role of carbocation's flexibility in
sesquiterpene biosynthesis: computational study of the formation
mechanism of terrecyclene. J. Org. Chem. 2011, 76 (6), 1572-1577.
terpenoid cyclases: multiscale modeling of thermodynamic, kinetic, and
dynamic effects. Curr. Opin. Chem. Biol. 2014, 21, 25-33; (b) Zhou, K.;
Peters, R. J., Electrostatic effects on (di)terpene synthase product outcome.
Chem. Commun. 2011, 47 (14), 4074-4080; (c) Driller, R.; Janke, S.; Fuchs,
M.; Warner, E.; Mhashal, A. R.; Major, D. T.; Christmann, M.; Brück, T.;
Loll, B., Towards a comprehensive understanding of the structural
dynamics of a bacterial diterpene synthase during catalysis. Nat. Commun.
2018, 9 (1), 3971.
10.
Tantillo, D. J., Importance of Inherent Substrate Reactivity in
Enzyme-Promoted Carbocation Cyclization/Rearrangements. Angew.
Chem. Int. Ed. 2017, 56 (34), 10040-10045.
25.
(a) Bohlmann, F.; Zdero, C., Caryophyllene derivatives and a
11.
Hong, A. Y.; Stoltz, B. M., Biosynthesis and chemical synthesis
hydroxyisocomene from Pulicaria dysenterica. Phytochemistry 1981, 20
(11), 2529-2534; (b) Bohlmann, F.; Zdero, C.; King, R. M.; Robinson, H.,
The first acetylenic monoterpene and other constituents from Senecio
clevelandii. Phytochemistry 1981, 20 (10), 2425-2427.
of presilphiperfolanol natural products. Angew. Chem. Int. Ed. 2014, 53
(21), 5248-5260.
12.
Alberto Marco, J.; Sanz-Cervera, J. F.; Morante, M. D.; García-
Lliso, V.; Vallès-Xirau, J.; Jakupovic, J., Tricyclic sesquiterpenes from
Artemisia chamaemelifolia. Phytochemistry 1996, 41 (3), 837-844.
26.
Shankar, S.; Coates, R. M., Solvolysis of Caryophyllen-8β-yl
Derivatives: Biomimetic Rearrangement−Cyclization to 12-Nor-8α-
presilphiperfolan-9β-ol. J. Org. Chem. 1998, 63 (25), 9177-9182.
13.
Bohlmann, F.; Zdero, C.; Jakupovic, J.; Robinson, H.; King, R.
M., Eriolanolides, eudesmanolides and a rearranged sesquiterpene from
Eriophyllum species. Phytochemistry 1981, 20 (9), 2239-2244.
27.
(a) Wallach, O.; Wallach, W., Zur Kenntniss der Terpene und
der ätherischen Oele. Einundzwanzigste Abhandlung. I. Zur Charakteristik
der Sesquiterpene. Liebigs Ann. 1892, 271 (3), 285-299; (b) Henderson, G.
G.; McCrone, R. O. O.; Robertson, J. M., CLXXVIII.—The chemistry of
the caryophyllene series. Part II. Clovene and isoclovene. J. Chem. Soc.
1929, 0 (0), 1368-1372; (c) Aebi, A.; Barton, D. H. R.; Burgstahler, A. W.;
Lindsey, A. S., Sesquiterpenoids. Part V. The stereochemistry of the
tricyclic derivatives of caryophyllene. J. Chem. Soc. 1954, 4659-4665; (d)
Barton, D. H. R.; Nickon, A., Sesquiterpenoids. Part VI. The absolute
configuration of caryophyllene. J. Chem. Soc. 1954, 4665-4669; (e) Parker,
W.; Raphael, R. A.; Roberts, J. S., Neoclovene a novel rearrangement
product of caryophyllene. Tetrahedron Lett. 1965, 6 (27), 2313-2316; (f)
Parker, W.; Raphael, R. A.; Roberts, J. S., Bridged ring systems. Part XV.
Structure of neoclovene (2,6,8,8-tetramethyltricyclo[5,2,2,01,6]undec-2-
ene). J. Chem. Soc. C 1969, (20), 2634-2643; (g) Fitjer, L.; Malich, A.;
Paschke, C.; Kluge, S.; Gerke, R.; Rissom, B.; Weiser, J.; Noltemeyer, M.,
Rearrangement of (-)-.beta.-Caryophyllene. A Product Analysis and Force
Field Study. J. Am. Chem. Soc. 1995, 117 (36), 9180-9189.
14.
(a) Melching, S.; König, W. A., Sesquiterpenes from the
essential oil of the liverwort Conocephalum conicum. Phytochemistry 1999,
51 (4), 517-523; (b) Pinto, S. C.; Leitão, G. G.; Bizzo, H. R.; Martinez, N.;
Dellacassa, E.; dos Santos, F. M.; Costa, F. L. P.; Amorim, M. B. d.; Leitão,
S. G., (−)-epi-Presilphiperfolan-1-ol, a new triquinane sesquiterpene from
the essential oil of Anemia tomentosa var. anthriscifolia (Pteridophyta).
Tetrahedron Lett. 2009, 50 (33), 4785-4787; (c) Joseph-Nathan, P.; Leitão,
S. G.; Pinto, S. C.; Leitão, G. G.; Bizzo, H. R.; Costa, F. L. P.; Amorim, M.
B. d.; Martinez, N.; Dellacassa, E.; Hernández-Barragán, A.; Pérez-
Hernández, N., Structure reassignment and absolute configuration of 9-epi-
presilphiperfolan-1-ol. Tetrahedron Lett. 2010, 51 (15), 1963-1965.
15.
Hong, A. Y.; Stoltz, B. M., Enantioselective total synthesis of
the reported structures of (-)-9-epi-presilphiperfolan-1-ol and (-)-
presilphiperfolan-1-ol: structural confirmation and reassignment and
biosynthetic insights. Angew. Chem. Int. Ed. 2012, 51 (38), 9674-9678.
16.
Osawa, E.; Aigami, K.; Takaishi, N.; Inamoto, Y.; Fujikura, Y.;
Majerski, Z.; Schleyer, P. v. R.; Engler, E. M.; Farcasiu, M., The
mechanisms of carbonium ion rearrangements of tricycloundecanes
elucidated by empirical force field calculations. J. Am. Chem. Soc. 1977, 99
(16), 5361-5373.
28.
(a) Cameron, A. F.; Hannaway, C.; Robertson, J. M., Crystal and
molecular
tetramethyltricyclo[5,4,0,0]undecane
structures
of
8,9-dibromo-1,4,4,8-
8,9-dibromo-2,2,4,8-
and
tetramethyltricyclo[5,3,1,0]undecane, derivatives of rearrangement
products of caryophyllene dihydrochloride and isocaryophyllene
respectively. J. Chem. Soc., Perkin Trans. 2 1973, (14), 1938-1942; (b)
Gollnick, K.; Schade, G.; Cameron, A. F.; Hannaway, C.; Roberts, J. S.;
Robertson, J. M., The structure of an isocaryophyllene rearrangement
17.
Pinto, S. C.; Leitao, G. G.; de Oliveira, D. R.; Bizzo, H. R.;
Ramos, D. F.; Coelho, T. S.; Silva, P. E.; Lourenco, M. C.; Leitao, S. G.,
Chemical composition and antimycobacterial activity of the essential oil
from Anemia tomentosa var. anthriscifolia. Nat. Prod. Commun. 2009, 4
(12), 1675-1678.
product,
1,5,9,9-tetramethyltricyclo[6,2,1,04,11]undec-5-ene:
X-ray
18.
González-Coloma, A.; Valencia, F.; Martín, N.; Hoffmann, J. J.;
analysis of the dibromo-derivative. J. Chem. Soc. D 1970, (4), 248-249; (c)
Gollnick, K.; Schade, G.; Cameron, A. F.; Hannaway, C.; Robertson, J. M.,
Hutter, L.; Marco, J. A.; Reina, M., Silphinene sesquiterpenes as model
insect antifeedants. J. Chem. Ecol. 2002, 28 (1), 117-129.
The
structure
of
a
hydrocarbon,
2,6,10,10-
19.
Synthesis of rac-Presilphiperfolan-9-ol. Liebigs Ann. 1996, (5), 799-807.
20. Hu, P.; Snyder, S. A., Enantiospecific Total Synthesis of the
Weyerstahl, P.; Marschall, H.; Schulze, M.; Schwope, I.,
tetramethyltricyclo[7,2,0,02,7]undec-5-ene, obtained from caryophyllene
dihydrochloride: X-ray analysis of the dibromo-derivative. J. Chem. Soc. D
1971, (1), 46-46.
Highly Strained (-)-Presilphiperfolan-8-ol via a Pd-Catalyzed Tandem
Cyclization. J. Am. Chem. Soc. 2017, 139 (14), 5007-5010.
29.
(a) Collado, I. G.; Aleu, J.; Macias-Sanchez, A. J.; Hernandez-
Galan, R., Synthesis and antifungal activity of analogues of naturally
occurring botrydial precursors. J. Chem. Ecol. 1994, 20 (10), 2631-2644;
(b) Collado, I. G.; Aleu, J.; Macías-Sánchez, A. J.; Hernández-Galán, R.,
Inhibition of Botrytis cinerea by New Sesquiterpenoid Compounds
21.
Bohlmann, F.; Jakupovic, J., Neue Sesquiterpen-
Kohlenwasserstoffe mit anomalen Kohlenstoffgerüst aus Silphium-arten.
Phytochemistry 1980, 19 (2), 259-265.
ACS Paragon Plus Environment