C O M M U N I C A T I O N S
are thus consistent with previous findings that CNA35 actually binds
to various types of collagen with similar affinity6 and suggest that
phage display is a suitable approach to identify more specific
targeting ligands.23
In summary, the AB5 dendritic wedge represents a well-defined,
highly versatile platform for the affinity enhancement of phage-
display derived peptides by mimicking key aspects of the multi-
valent architecture of the phage head. The collagen targeting ligands
presented here provide attractive alternatives for antibody- and
protein-mediated targeting of collagen remodeling in a number of
disease processes. These results thus emphasize the advantage of
combining the strength of biological display methods for the affinity
selection of peptide ligands with the ability of synthetic chemistry
to provide a wide variety of functional groups and 3D topologies.
Acknowledgment. We thank Katy Nash Krahn, Ingrid van Baal,
Tilman Hackeng (Maastricht), and Jos Raats (Nijmegen) for
experimental support. This work was supported by NWO VIDI
Grant 700.56.428 to M.M., a SPINOZA grant to E.W.M., and the
BSIK Program BSIK03033.
Figure 3. Laser scanning confocal microscopy (LSCM) images of 1 × 1
cm porcine pericardium sections showing the performance of dendrimer-
displayed collagen binding peptides in the ex vivo imaging of collagen in
native tissue. Tissues were incubated for 3 h in HBS pH 7.4 with 0.6 µM
28 (a) or H2N-HVWMQAPGGGK(fluorescein)-NH2 at concentrations of
0.6 µM (b) and 60 µM (c). (d-f) Costaining of a tissue section with 6 µM
AlexaFluor568-labeled CNA35 in HBS pH 7.4 for 3 h, followed by 0.6
µM 28 for an additional 2 h (d: green channel showing 28: e: red channel
showing AlexaFluor568-labeled CNA35; f: overlay of green and red
channels). The scale bar represents 50 µm.
Supporting Information Available: Experimental details regarding
phage display, dendrimer and peptide synthesis, in Vitro binding
experiments, and collagen imaging. This material is available free of
ligand increases the effective molarity (EM) to 0.34 ( 0.07 mM
for binding to a second receptor site.18 This number is consistent
with the length of the flexible linker used here and an average
distance of ∼30 Å between two peptide binding sites.19 This
analysis also indicates that multivalent binding is only effective
when EM > Kinter and that statistical factors contribute to enhance
the effect of multivalent interactions. A more detailed characteriza-
tion of the binding specificity of phage peptide dendrimers and its
dependency on the molecular architecture, valency of the wedge,
and density of binding sites is ongoing.
References
(1) Even-Ram, S.; Yamada, K. M. Curr. Opin. Cell Biol. 2005, 17, 524–532.
(2) Gelse, K.; Poschl, E.; Aigner, T. AdV. Drug DeliVery ReV. 2003, 55, 1531–
1546.
(3) Adiguzel, E.; Ahmad, P. J.; Franco, C.; Bendeck, M. P. Vasc. Med. 2009,
14, 73–89.
(4) Myllyharju, J.; Kivirikko, K. I. Ann. Med. 2001, 33, 7–21.
(5) Boerboom, R. A.; Krahn, K. N.; Megens, R. T.; van Zandvoort, M. A.;
Merkx, M.; Bouten, C. V. J. Struct. Biol. 2007, 159, 392–399.
(6) Krahn, K. N.; Bouten, C. V.; van Tuijl, S.; van Zandvoort, M. A.; Merkx,
M. Anal. Biochem. 2006, 350, 177–185.
(7) Megens, R. T.; Oude Egbrink, M. G.; Cleutjens, J. P.; Kuijpers, M. J.;
Schiffers, P. H.; Merkx, M.; Slaaf, D. W.; van Zandvoort, M. A. Mol.
Imaging 2007, 6, 247–260.
Having established the favorable binding characteristics of the
phage mimics on collagen-coated substrates in vitro, we next
assessed their efficacy for selective collagen staining in the more
heterogeneous environment of native collagen-containing tissues.
We tested the performance of fluorescein-labeled monomers and
pentamers for collagen imaging in the parietal pericardium, a fibrous
sac around the heart that consists mainly of collagen type I and
some type III.20,21 Incubation of pig parietal pericardium with 0.6
µM fluorescein-labeled peptide pentamer 28 showed a distinct
fibrous network with fibers of an ∼2 µm thickness (Figure 3).
Consistent with the in Vitro binding studies, no collagen was
detected using the same concentration of the monovalent collagen
binding peptide. Similar collagen architectures as observed for the
pentamer at 0.6 µM were observed when using 60 µM of
the monovalent peptide, but the amount of background fluorescence
was significantly increased. To compare the properties of the peptide
pentamer to those of CNA35, the same tissue was costained with
0.6 µM 28 (green) and 6 µM AlexaFluor568-labeled CNA35 (red).
Both probes visualize collagen fibers oriented in the same direction,
but a more specific stain was observed for the peptide pentamer
compared to CNA35 (Figure 3D-F). The wave-like collagen
structures observed with the CNA35 agree with other imaging
studies of total collagen content in pericardial tissues.22 These results
(8) Hayes, A. J.; Hughes, C. E.; Caterson, B. Methods 2008, 45, 10–21.
(9) Smith, G. P.; petrenko, V. A. Chem. ReV. 1997, 97, 391–410.
(10) Sergeeva, A.; Kolonin, M. G.; Molldrem, J. J.; Pasqualini, R.; Arap, W.
AdV. Drug DeliVery ReV. 2006, 58, 1622–1654.
(11) Takagi, J.; Asai, H.; Saito, Y. Biochemistry 1992, 31, 8530–8534.
(12) Caravan, P.; Das, B.; Deng, Q.; Dumas, S.; Jacques, V.; Koerner, S.;
Kolodziej, A.; Looby, R. J.; Sun, W. C.; Zhang, Z. Chem. Commun. 2009,
430–432.
(13) Caravan, P.; Das, B.; Dumas, S.; Epstein, F. H.; Helm, P. A.; Jacques, V.;
Koerner, S.; Kolodziej, A.; Shen, L.; Sun, W. C.; Zhang, Z. Angew. Chem.,
Int. Ed. 2007, 46, 8171–8173.
(14) Choi, S.-K. Synthetic multiValent molecules. Concept and biomedical
applications; Wiley: Hoboken, NJ, 2004.
(15) Kitov, P. L.; Sadowska, J. M.; Mulvey, G.; Amstrong, G. D.; Ling, H.;
Pannu, N. S.; Read, R. J.; Bundle, D. R. Nature 2000, 403, 669–672.
(16) Depraetere, H.; Viaene, A.; Deroo, S.; Vauterin, S.; Deckmyn, H. Blood
1998, 92, 4207–4211.
(17) van Baal, I.; Malda, H.; Van Dongen, J. L. J.; Merkx, M.; Meijer, E. W.;
Synowsky, S. A.; Hackeng, T. M. Angew. Chem., Int. Ed. 2005, 44, 5052–
5057.
(18) Krishnamurthy, V. M.; Semetey, V.; Bracher, P. J.; Shen, N.; Whitesides,
G. M. J. Am. Chem. Soc. 2007, 129, 1312–1320.
(19) van Dongen, E. M. W. M.; Evers, T. H.; Dekkers, L. M.; Meijer, E. W.;
Klomp, L. W. J.; Merkx, M. J. Am. Chem. Soc. 2007, 129, 3494–3495.
(20) Keene, D. R.; Sakai, L. Y.; Bachinger, H. P.; Burgeson, R. E. J. Cell Biol.
1987, 105, 2393–2402.
(21) Simionescu, D.; Iozzo, R. V.; Kefalides, N. A. Matrix 1898, 9, 301–310.
(22) Rodriguez-Feo, J. A.; Sluijter, J. P. G.; de Kleijn, D. P. V.; Pasterkamp,
G. Curr. Pharm. Des. 2005, 11, 2501–2514.
(23) Lusvarghi, S.; Kim, J. M.; Creeger, Y.; Armitage, B. A. Org. Biomol. Chem.
2009, 7, 1815–1820.
JA902285M
9
J. AM. CHEM. SOC. VOL. 131, NO. 33, 2009 11685