Paper
Dalton Transactions
between FC and its transporter may serve as a prototype for 19 R. Chakraborty, E. Storey and D. van der Helm, Biometals,
other hydroxamate siderophores for which the detailed X-ray 2007, 20, 263.
structure is lacking. Assuming similar H-bonding interactions 20 D. van der Helm and R. Chakraborty, in Microbial transport
to those described for FC in its transporter, we suggest follow-
ing similar optimization processes.
systems, ed. G. Winkelmann, Wiley-VCH, Weinheim, 2002,
ch. 11, p. 261.
In future work, we will try to extend the guidelines for 21 A. D. Ferguson, E. Hofmann, J. W. Coulton, K. Diederichs
optimization and multiple-recognition to other bacteria and and W. Welte, Science, 1998, 282, 2215.
other siderophores with an emphasis on mammalian patho- 22 K. P. Locher, B. Rees, R. Koebnik, A. Mitschler,
genic targets. We also plan to initiate a computer ‘docking’
analysis aimed at understanding the origin of recognition in
L. Moulinier, J. P. Rosenbusch and D. Moras, Cell, 1998,
95, 771.
E. coli and at resolving the lack of stereo-specificity observed in 23 R. Breslow, Chem. Soc. Rev., 1972, 1, 553.
both enantiomer pairs derived from Asp in P. putida.
24 K. N. Raymond, G. Muller and B. F. Matzanke, Top. Curr.
Chem., 1984, 123, 49.
25 A. Shanzer, C. E. Felder and Y. Barda, in The Chemistry of
Hydroxylamines, Oximes and Hydroxamic Acids, ed.
Z. Rappoport and J. F. Liebman, John Wiley & Sons, Ltd,
2009, ch. 16, p. 751.
Acknowledgements
E. G.-K. and A. Sz. are grateful to the Polish National Science
Center (NCN, UMO-2011/03/B/ST5/01057) and Wroclaw Centre 26 M. J. Miller, Chem. Rev., 1989, 89, 1563.
of Biotechnology (The Leading National Research Centre 27 S. Heggemann, U. Mollmann, P. Gebhardt and L. Heinisch,
Program, KNOW, 2014–2018) for financial support.
Biometals, 2003, 16, 539.
28 M. Gaspar, M. A. Santos, K. Krauter and G. Winkelmann,
Biometals, 1999, 12, 209.
29 S. K. Sharma, M. J. Miller and S. M. Payne, J. Med. Chem.,
1989, 32, 357.
References
1 J. B. Neilands, Annu. Rev. Nutr., 1981, 1, 27.
2 C. Wandersman and P. Delepelaire, Annu. Rev. Microbiol.,
2004, 58, 611.
3 M. L. Guerinot, Annu. Rev. Microbiol., 1994, 48, 743.
4 J. B. Neilands, J. Biol. Chem., 1995, 270, 26723.
5 G. Winkelmann, Biochem. Soc. Trans., 2002, 30, 691.
30 S. Dhungana, J. M. Harrington, P. Geblhardt, U. Mollmann
and A. L. Crumbliss, Inorg. Chem., 2007, 46, 8362.
31 B. H. Lee, M. J. Miller, C. A. Prody and J. B. Neilands,
J. Med. Chem., 1985, 28, 317.
32 B. H. Lee, M. J. Miller, C. A. Prody and J. B. Neilands,
J. Med. Chem., 1985, 28, 323.
6 C. Ratledge and L. G. Dover, Annu. Rev. Microbiol., 2000, 54, 33 K. Matsumoto, T. Ozawa, K. Jitsukawa and H. Masuda,
881. Inorg. Chem., 2004, 43, 8538.
7 R. C. Hider and X. Kong, Nat. Prod. Rep., 2010, 27, 34 T. Emery, L. Emery and R. K. Olsen, Biochem. Biophys. Res.
637. Commun., 1984, 119, 1191.
8 I. J. Schalk, G. L. A. Mislin and K. Brillet, in Current Topics 35 R. K. Olsen and K. Ramasamy, J. Org. Chem., 1985, 50,
in Membranes, ed. J. M. Arguello and S. Lutsenko, Elsevier,
2012, vol. 69, ch. 2, p. 37.
9 I. J. Schalk and L. Guillon, Amino Acids, 2013, 44,
1267.
10 K. D. Krewulak and H. J. Vogel, Biochim. Biophys. Acta,
2008, 1778, 1781.
11 M. Miethke and M. A. Marahiel, Microbiol. Mol. Biol. Rev.,
2007, 71, 413.
2264.
36 A. Shanzer, J. Libman, R. Lazar and Y. Tor, Pure Appl.
Chem., 1989, 61, 1529.
37 A. Shanzer, J. Libman, R. Lazar, Y. Tor and T. Emery,
Biochem. Biophys. Res. Commun., 1988, 157, 389.
38 E. Jurkevitch, Y. Hadar, Y. Chen, J. Libman and A. Shanzer,
J. Bacteriol., 1992, 174, 78.
39 O. Ardon, R. Nudelman, C. Caris, J. Libman, A. Shanzer,
Y. Chen and Y. Hadar, J. Bacteriol., 1998, 180, 2021.
12 V. Braun and K. Hantke, in Microbial transport systems, ed.
G. Winkelmann, Wiley-VCH, Weinheim, 2002, ch. 12, 40 H. Weizman, O. Ardon, B. Mester, J. Libman, O. Dwir,
p. 289.
Y. Hadar, Y. Chen and A. Shanzer, J. Am. Chem. Soc., 1996,
118, 12368.
41 T. Zheng and E. M. Nolan, Metallomics, 2012, 4, 866.
42 M. J. Miller, J. A. Mckee, A. A. Minnick and E. K. Dolence,
Biol. Met., 1991, 4, 62.
13 V. Braun and H. Killmann, Trends Biochem. Sci., 1999, 24,
104.
14 J. B. Neilands, J. Am. Chem. Soc., 1952, 74, 4846.
15 S. J. Rogers, R. A. Warren and J. B. Neilands, Nature, 1963,
200, 167.
43 U. Mollmann, L. Heinisch, A. Bauernfeind, T. Kohler and
D. Ankel-Fuchs, Biometals, 2009, 22, 615.
16 J. B. Neilands, Science, 1967, 156, 1443.
17 D. E. Crowley, Y. C. Wang, C. P. P. Reid and P. J. Szaniszlo, 44 C. Ji, R. E. Juarez-Hernandez and M. J. Miller, Future Med.
Plant Soil, 1991, 130, 179. Chem., 2012, 4, 297.
18 E. Barness, Y. Hadar, Y. Chen, A. Shanzer and J. Libman, 45 J. M. Roosenberg, Y. M. Lin, Y. Lu and M. J. Miller, Curr.
Plant Physiol., 1992, 99, 1329. Med. Chem., 2000, 7, 159.
Dalton Trans.
This journal is © The Royal Society of Chemistry 2015