Med Chem Res (2013) 22:2279–2283
2283
Acknowledgments The authors sincerely acknowledge AICTE,
New Delhi (India), for financial support under RPS Scheme (File No.
8023/BOR/RID/RPS-170/2008-09). Authors are thankful to Principal,
KLES’ College of Pharmacy, Hubli, for providing necessary facilities
to carry out this research work. We sincerely express our gratitude to
Dr. M.N.A. Rao, General Manager (R&D), Divi’s Laboratory,
Hyderabad and Dr. L.V.G. Nargund, Professor, Nargund College of
Pharmacy, Bangalore, for their encouragement. We sincerely express
our gratitude to Tuberculosis Antimicrobial Acquisition Co-ordinat-
ing Facility (TAACF, USA) for providing the antimycobacterial
activity profile. We are grateful to The Director, SAIF, Punjab Uni-
versity and The Chairman, USIC, Karnataka University, for providing
elemental and spectral analysis.
Inderlied CB, Kemper CA, Bermudez LE (1993) The Mycobacterium
avium complex. Clin Microbiol Rev 6:266–310
Karthikeyan MS, Holla BS, Kumari NS (2007) Synthesis and
antimicrobial studies on novel chloro-fluorine containing
hydroxy pyrazolines. Eur J Med Chem 42:30–36
Khode S, Maddi V, Aragade P, Palkar M, Ronad P, Mamledesai S,
Thippeswamy AHM, Satyanarayana D (2009) Synthesis and
pharmacological evaluation of a novel series of 5-(substi-
tuted)aryl-3-(3-coumarinyl)-1-phenyl-2-pyrazolines as novel
anti-inflammatory and analgesic agents. Eur J Med Chem 44:
1682–1688
Knoevenagel E (1898) Condensationn zwischen malonester und
aldehyden unter dem einfluss von ammoniak und organischen
aminen. Chem Ber 31:2596
Conflict of interest The authors have declared no conflict of
interest.
Kopec AE, Zwolska Z (2002) Bioavailability factors of INH in fast
and slow acetylators, healthy volunteers. Acta Poloniae Pharm
59:452–457
Kucukguzel SG, Rollas S (2000) Synthesis, characterization and
pharmacological properties of some 4-arylhydrazono-2-pyrazo-
line-5-one derivatives obtained from heterocyclic amines. Eur J
Med Chem 35:761–765
References
Kucukguzel SG, Rollas S (2002) Synthesis, characterization of novel
coupling products and 4-arylhydrazono-2-pyrazoline-5-ones as
potential antimycobacterial agents. IL Farmaco 57:583–587
Mandell GL, Petri WA (1996) Antimicrobial agents used in the
chemotherapy of tuberculosis. In: Hardman J et al (eds)
Goodman and Gilman’s the pharmacological basis of therapeu-
tics, 9th edn. McGraw-Hill, New York, pp 1155–1174
Morris S, Bai GH, Suffys P, Portilo-Gomez L, Fairchok M, Rouse D
(1995) Molecular mechanisms of multiple drug resistance in
clinical isolates of Mycobacterium tuberculosis. J Infect Dis 171:
954–960
Nauduri D, Reddy GB (1998) Antibacterials and antimycotics. Part 1.
Synthesis and activity of 2-pyrazoline derivatives. Chem Pharm
Bull 46:1254–1257
Reis RS, Neves I, Lourenco SLS, Fonseca LS, Lourenco MCS (2004)
Comparison of flow cytometric and alamar blue tests with the
proportional method for testing susceptibility of M. tuberculosis
to rifampin and isoniazid. J Clin Microbiol 42:2247–2248
Sensi P, Grassi G (1996) Antimycobacterial agents. In: Wolff ME
(ed) Burger’s medicinal chemistry and drug discovery, 5th edn.
Wiley, New York, pp 575–635
Shaharyar M, Siddiqui AA, Ali MA, Sriram D, Yogeeswari P (2006a)
Synthesis and in vitro antimycobacterial activity of N1-nicoti-
noyl-3-(40-hydroxy-30-methyl phenyl)-5-[(sub)phenyl]-2-pyrazo-
lines. Bioorg Med Chem Lett 16:3947–3952
Shaharyar M, Siddiqui AA, Ali MA (2006b) Synthesis and evaluation
of phenoxy acetic acid derivatives as anti-mycobacterial agent.
Bioorg Med Chem Lett 16:4571–4578
Shenoy GG, Bhat AR, Bhat GV, Kotian M (2001) Synthesis of
pyrazoles and isoxazole in triethanolamine medium Ind. J Het-
erocycl Chem 10:197–199
Ali MA, Shaharyar M, Siddiqui AA (2007) Synthesis, structural
activity relationship and anti-tubercular activity of novel pyraz-
oline derivatives. Eur J Med Chem 42:268–275
Aragade P, Maddi V, Khode S, Palkar M, Ronad P, Mamledesai S,
Satyanarayana D (2009) Synthesis and antibacterial activity of
new series of 3-[3-(substituted phenyl)-1-isonicotinoyl-1H-pyr-
azol-5-yl]-2H-chromen-2-one derivatives. Arch Pharm Chem
Life Sci 342:361–366
Bolakatti G, Maddi V, Mamledesai SN, Ronad PM, Palkar MB,
Swamy S (2008) Synthesis and evaluation of anti-inflammatory
and analgesic activities of novel series of coumarin mannich
bases. Arzneim Forsch 58:515–520
Collins FM (1989) Mycobacterial disease, immunosuppression and
acquired immunodeficiency syndrome. Clin Microbiol Rev 2:
360–377
Collins LA, Franzblau SG (1997) Microplate alamar blue assay
versus BACTEC 460 system for high-throughput screening of
compounds against M. tuberculosis and M. ovium. Antimicrob
Agents Chemother 41:1004–1009
Dessen AA, Quemard JS, Blanchard WR, Sacchettini JC (1995)
Crystal structure and function of the isoniazid target of M.
tuberculosis. Science 267:1638–1641
Genin MJ, Allwine DA, Anderson DJ, Barbachyn MR, Emmert DE
et al (2000) Substituent effects on the antibacterial activity of
nitrogen–carbon-linked (azolylphenyl) oxazolidinones with
expanded activity against the fastidious gram-negative organ-
isms H. influenzae and M. catarrhalis. J Med Chem 43:953–970
Graham NM, Galai KE, Nelson J, Bonds AM, Rizzo RT (1996) Effect
of isoniazid chemoprophylaxis on HIV-related mycobacterial
disease. Arch Intern Med 156:889–894
Halsey NA, Coberly JS, Desormeaux J, Losikoff P (1998) Random-
ised trial of isoniazid versus rifampicin and pyrazinamide for
prevention of tuberculosis in HIV-1 infection. Lancet 351:
786–792
Telzak EE, Sepkowitz K, Alpert P (1995) Multidrug resistant
tuberculosis in patients without HIV infection. N Engl J Med
333:907–911
123