Chouhan and Alper
JOCArticle
SCHEME 1
SCHEME 2
medicinal agents active toward a variety of diseases, there are
very few synthetic methods described in the literature for the
preparation of ring-fused oxazoloisoquinolinones. One
approach is based on the condensation reaction of homo-
phthalic anhydrides and homophthalic acids with cyclic
imino ether and 2-amino ethanol, respectively.3,5 These
methods, however, typically provide moderate to low pro-
duct yields (Scheme 1). Furthermore, to our knowledge, the
synthesis of pyrazoloisoquinolinones has not yet been re-
ported. Thus, we believe that the development of a facile
approach to the synthesis of substituted ring-fused oxazolo-
and pyrazoloisoquinolinone is a very worthwhile goal.
Classical organic synthesis usually involves the stepwise
formation of individual bonds in the construction of
a targeted molecule. However, the development of new
methods for the simultaneous formation for example of both
C-C and C-N (O) bonds in a single step is quite advanta-
geous, since it allows the rapid buildup of molecular com-
plexity from relatively simple starting materials.6
heterocycles, are a valuable synthetic tool for achieving
this goal.9-12
In the context of our interest in the application of Pd-
catalyzed cascade processes for the synthesis of heterocyclic
compounds, we have recently described some new methods for
the preparation of isoindolinones,13 2-carboxyindoles,14 and
substituted indocyclic enol lactones.15 Specifically, we reported
a novel cascade process for the synthesis of ring-fused sub-
stituted isoquinolinones using a three-component carboxa-
midation/aldol-type condensation cascade sequence from the
corresponding aryl iodide/active methylene compound, car-
bon monoxide, and lactam in 60-95% yields (Scheme 2).16
In an effort to further diversify this cascade process, we
evaluated the use of oxazolodinone and pyrazolidinone for
the synthesis of the ring-fused oxazolo- and pyrazoloiso
quinolinones (Scheme 3). This methodology provides high
structural diversity in all three rings of the isoquinolinone
skeleton.
Transition metal-catalyzed reactions,8 especially palladium-
catalyzed carbonylative cyclization reactions for the forma-
tion of a wide variety of oxygen- and nitrogen-containing
(5) (a) Coppola, G. M. J. Heterocycl. Chem. 1981, 18, 767. (b) Petersen,
S.; Heitzer, H. Justus Liebigs Ann. Chem. 1978, 283.
(6) (a) Nicolau, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int.
Ed. 2006, 45, 7134. (b) Dondas, H. A.; Fishwick, C. W. G.; Gai, X.; Grigg, R.;
Kilner, C.; Dumronchai, N.; Kongkathip, B.; Kongkathip, N.; Ploysuk, C.;
Sridharan, V. Angew. Chem., Int. Ed. 2005, 44, 7570. (c) Grigg, R.; Sridharan,
V. J. Organomet. Chem. 1999, 576, 65. (d) Tietze, L. F. Chem. Rev. 1996, 96,
115. (e) Parsons, P. J.; Penkett, C. S.; Shell, A. J. Chem. Rev. 1996, 96, 195.
(f) Grigg, R.; Inman, M.; Kilner, C.; Koppen, I.; Marchbank, J.; Selby, P. J.;
Sridharan, V. Tetrahedron 2007, 63, 6152. (g) Salcedo, A.; Neuville, L.;
Rondot, C.; Retailleau, P.; Zhu, J. Org. Lett. 2008, 10, 857. (h) Thansandote,
P.; Raemy, M.; Rudolph, A.; Lautens, M. Org. Lett. 2007, 9, 5255. (i) Pinto,
A.; Neuville, L.; Retailleau, P.; Zhu, J. Org. Lett. 2006, 8, 4927. (j) Yanada,
R.; Obika, S.; Inokuma, T.; Yanada, K.; Yamashita, M.; Ohta, S.;
Takemoto, Y. J. Org. Chem. 2005, 70, 6972. (k) Abbiati, G.; Arcadi, A.;
Canevari, V.; Capezzuto, L.; Rossi, E. J. Org. Chem. 2005, 70, 6454. (l) Cuny,
G.; Bois-Choussy, M.; Zhu, J. Angew. Chem., Int. Ed. 2003, 42, 4774.
(m) Rossi, E.; Arcadi, A.; Abbiati, G.; Attanasi, O. A.; De Crescentini, L.
Angew. Chem., Int. Ed. 2002, 41, 1400. (n) Poli, G.; Giambastiani, G.;
Heumann, A. Tetrahedron 2000, 56, 5959.
Results and Discussion
Synthesis of Ring-Fused Substituted Oxazoloisoquino-
linones. In our initial study in this area,16 we found the
optimized reaction conditions for this type of cascade pro-
cess. Thus, the present reaction was first attempted by using
1 mmol of ethyl 2-(2-iodophenyl)acetate 1a as the active
methylene compound with the oxazolidinone 2a (1.1 equiv)
(7) (a) Von Seebach, M.; Grigg, R.; De Meijere, A. Eur. J. Org. Chem.
2002, 19, 3268. (b) Bedford, R. B.; Betham, M. J. Org. Chem. 2006, 71, 9403.
(c) Fayol, A.; Fang, Y.-Q.; Lautens, M. Org. Lett. 2006, 8, 4203.
(8) Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic
Molecules; University Science Book: Sausalito, CA, 1999.
(11) For recent examples of the palladium-catalyzed cascade process see:
(a) Tadd, A. C.; Matsuno, A.; Fielding, M. R.; Willis, M. C. Org. Lett. 2009,
11, 583. (b) Worlikar, S. A.; Larock, R. C. J. Org. Chem. 2008, 73, 7175.
(c) Grigg, R.; Sridharan, V.; Shah, M.; Mutton, S.; Kilner, C.; MacPherson,
D.; Milner, P. J. Org. Chem. 2008, 73, 8352.
(12) For palladium-catalyzed carbonylation reactions see: (a) Abbiati,
G.; Arcadi, A.; Canevari, V.; Capezzuto, L.; Rossi, E. J. Org. Chem. 2005, 70,
6454. (b) Dai, G.; Larock, R. C. J. Org. Chem. 2002, 67, 7042. (c) Gabriele,
B.; Mancuso, R.; Salerno, G.; Lupinacci, E.; Ruffolo, G.; Costa, M. J. Org.
Chem. 2008, 73, 4971. (d) Haddad, N.; Tan, J.; Farina, V. J. Org. Chem. 2006,
71, 5031. (e) Hu, Y.; Zhang, Y.; Yang, Z.; Fathi, R. J. Org. Chem. 2002, 67,
2365. (f) Kadnikov, D. V.; Larock, R. C. J. Org. Chem. 2004, 69, 6772.
(g) Nieman, J. A.; Ennis, M. D. J. Org. Chem. 2001, 66, 2175. (h) Siamaki, A.
R.; Black, D. A.; Arndtsen, B. A. J. Org. Chem. 2008, 73, 1135. (i) Xiao,
W.-J.; Alper, H. J. Org. Chem. 1999, 64, 9646.
(9) For palladium-catalyzed reactions in organic synthesis see: (a) Hand-
book of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.;
John Wiley and Sons: New York, 2002; Vol. 2. (b) Tsuji, J. Palladium Reagents
and Catalysts: Innovations in Organic Synthesis; John Wiley and Sons: New
York, 1995. (c) Tsuji, J. Palladium Reagents and Catalysts: New Perspectives
for the 21st Century; John Wiley and Sons: New York, 2003. (d) Palladium in
Organic Synthesis; Tsuji, J., Ed.; Springer: Berlin, Germany, 2005. (e) Heck, R. F.
Palladium Reagents in Organic Synthesis; Academic Press: New York, 1985.
(f) Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry; Pergamon:
New York, 2000.
(10) For palladium-catalyzed heterocycles synthesis see: (a) Colquhoun,
H. M.; Thompson, D. J.; Twigg, M. V. Carbonylation: Direct Synthesis of
Carbonyl Compounds; Plenum Press: New York, 1991. (b) Minatti, A.; Muniz, K.
Chem. Soc. Rev. 2007, 36, 1142. (c) Takacs, E.; Varga, C.; Skoda-Foeldes, R.;
Kollar, L. Tetrahedron Lett. 2007, 48, 2453. (d) Karimi, F.; Langstroem, B.
J. Chem. Soc., Perkin Trans. 1 2002, 2111. (e) Morera, E.; Ortar, G. Tetrahedron
Lett. 1998, 39, 2835. (f) Mori, M.; Chiba, K.; Ohta, N.; Ban, Y. Heterocycles
1979, 13, 329. (g) Perry, R. J.; Turner, S. R. J. Org. Chem. 1991, 56, 6573.
(13) Cao, H.; McNamee, L.; Alper, H. Org .Lett. 2008, 10, 5281.
(14) Vieira, T. O.; Meaney, L. A.; Shi, Y.-L.; Alper, H. Org. Lett. 2008,
10, 4899.
(15) Li, Y.; Yu, Z.; Alper, H. Org. Lett. 2007, 9, 1647.
(16) Chouhan, G.; Alper, H. Org. Lett. 2008, 10, 4987.
6182 J. Org. Chem. Vol. 74, No. 16, 2009