4804
O. Henry et al. / Bioorg. Med. Chem. 17 (2009) 4797–4805
determined from the initial velocity measurements and KI value
Acknowledgment
calculated from an Eadie–Hofstee plot.41,42
This research was supported by the National Institutes of
Health Grant GM58442 (M.D.D.), the National Science Foundation
Grant DBI 0321690 (D.S.) and funds from Yulex Corp.
4.3.2. Photolabeling reactions
All photolysis reactions were conducted at 4 °C in a UV Rayonet
mini-reactor equipped with six RPR-3500 Å lamps and a circulat-
ing platform that allows up to eight samples to be irradiated simul-
Supplementary data
taneously. All reactions (100
quartz test tubes (10 Â 75 mm) and contained 52 mM TrisÁHCl,
pH 7.0, 5.8 mM DTT, 12 mM MgCl2, 12 M ZnCl2, 25 mM NH4HCO3
and the targeted enzyme at 50 g/mL. Where appropriate, reac-
tions contained [32P]4a (29 M) or [32P]4b (29
M); these concen-
lL) were performed in silinized
1H NMR spectra for 6a, 7a, 7b, 8a, 8b, 4a, and 4b, 31P NMR spec-
tra for 6a, 7a, 7b, 8a, 8b, 4a, and 4b, HR-ESI-MS spectra for 4a and
4b and HPLC chromatograms for 4a and 4b are included. Stereo
images of the models shown in Figure 8 are included along with
several tables that summarize important distances within the ac-
tive site of each enzyme model. Pymol files for each of the enzyme
models are also provided. Supplementary data associated with this
article can be found, in the online version, at doi:10.1016/
l
l
l
l
trations were chosen to be 10 times above their experimentally
measured KI values (for ScPFTase). For substrate protection exper-
iments, FPP was added to a final concentration of 100
tions were photolyzed for 6 h using the apparatus described
above. Loading buffer [50 L; 4.0% SDS, 12% glycerol (w/v),
lM. Reac-
l
50 mM TrisÁHCl, 2.0% 2-mercaptoethanol (v/v), 0.01% bromophenol
blue] was then added to each sample, and the samples were heated
to 70 °C for 20 min followed by analysis by SDS–polyacrylamide
gel electrophoresis using a 12% Tris–Tricine gel. Gels were first
stained with Comassie Blue or Sypro Orange to visualize the pro-
teins followed by phosphorimaging analysis to assess the extent
of crosslinking that was subsequently quantified via volume inte-
gration of the labeled protein bands (after subtraction of any back-
ground signal).
References and notes
1. Cane, D. E. Comp. Nat. Prod. Chem. 1999, 2, 155.
2. Davis, E. M.; Croteau, R. Top. Curr. Chem. 2000, 209, 53.
3. Loomis, W. D.; Croteau, R. Biochem. Plants 1980, 4, 363.
4. Cornish, K. ACS Symp. Ser. 1992, 497, 18.
5. Zhang, F. L.; Casey, P. J. Ann. Rev. Biochem. 1996, 65, 241.
6. Fraga, B. M. Nat. Prod. Rep. 2008, 25, 1180.
7. Marecak, D. M.; Horiuchi, Y.; Arai, H.; Shimonaga, M.; Maki, Y.; Koyama, T.;
Ogura, K.; Prestwich, G. D. Bioorg. Med. Chem. Lett. 1997, 7, 1973.
8. Zhang, Y.-W.; Koyama, T.; Marecak, D. M.; Prestwich, G. D.; Maki, Y.; Ogura, K.
Biochemistry 1998, 37, 13411.
9. Tian, R.; Li, L.; Tang, W.; Liu, H.; Ye, M.; Zhao, Z. K.; Zou, H. Proteomics 2008, 8,
3094.
10. DeGraw, A. J.; Zhao, Z.; Hsieh, J.; Jefferies, M.; Distefano, M. D.; Strickland, C. L.;
Shintani, D.; Nural, H.; McMahan, C.; Xie, W. J. Org. Chem. 2007, 72, 4587.
11. Turek, T. C.; Gaon, I.; Distefano, M. D.; Strickland, C. L. J. Org. Chem. 2001, 66,
3253.
12. Kale, T. A.; Raab, C.; Yu, N.; Dean, D. C.; Distefano, M. D. J. Am. Chem. Soc. 2001,
123, 4373.
13. Turek, T. C.; Gaon, I.; Gamache, D.; Distefano, M. D. Bioorg. Med. Chem. Lett.
1997, 7, 2125.
14. Turek, T. C.; Gaon, I.; Distefano, M. D. Tetrahedron Lett. 1996, 37, 4845.
15. Gaon, I.; Turek, T. C.; Weller, V. A.; Edelstein, R. L.; Singh, S. K.; Distefano, M. D.
J. Org. Chem. 1996, 61, 7738.
4.3.3. In vitro reactions with the germacrene producing cyclase
(NoSTSase)
Reactions were performed by incubating 10
zyme45 in 200
L of reaction buffer (10 mM MgCl2 and 1.0 mM
2-mercaptoethanol in 10 mM TrisÁHCl, pH 8.0) with varying con-
centrations of probe 4b or FPP (50, 100 or 200 M) in a sealed glass
vial. After reaction for 18 h at 25 °C, the headspace gas was sam-
pled for 10 min by SPME using a 100 m polydimethylsiloxane fi-
lg of purified en-
l
l
l
ber. Afterwards, the full fiber was inserted into the injection port of
a GC/MS for analysis. Compounds bound to SPME fibers were des-
orbed for 20 min in the injection port (250 °C) followed by gas
chromatographic separation using a temperature program that
ramped from 60 °C to 250 °C at a rate of 20 °C/min. Mass spectra
were scanned in the range of 5–300 atomic mass units at 1 s
intervals.
16. Gaon, I.; Turek, T. C.; Distefano, M. D. Tetrahedron Lett. 1996, 37, 8833.
17. Edelstein, R. L.; Distefano, M. D. Biochem. Biophys. Res. Commun. 1997, 235, 377.
18. Allen, C. M.; Baba, T. Methods Enzymol. 1985, 110, 117.
19. Baba, T.; Allen, C. M. Biochemistry 1984, 23, 1312.
20. Baba, T.; Muth, J.; Allen, C. M. J. Biol. Chem. 1985, 260, 10467.
21. Omer, C. A.; Kral, A. M.; Diehl, R. E.; Prendergast, G. C.; Powers, S.; Allen, C. M.;
Gibbs, J. B.; Kohl, N. E. Biochemistry 1993, 32, 5167.
22. Das, N. P.; Allen, C. M. Biochem. Biophys. Res. Commun. 1991, 181, 729.
23. Yokoyama, K.; McGeady, P.; Gelb, M. H. Biochemistry 1995, 34, 1344.
24. Rilling, H. C. Methods Enzmol. 1985, 110, 125.
4.4. Modeling of 4b in the active sites of FPP-utilizing enzymes
25. Chehade, K. A. H.; Kiegiel, K.; Isaacs, R. J.; Pickett, J. S.; Bowers, K. E.; Fierke, C.
A.; Andres, D. A.; Spielmann, H. P. J. Am. Chem. Soc. 2002, 124, 8206.
26. Turek, T. C.; Gaon, I.; Distefano, M. D. J. Labelled Compd. Radiopharm. 1997, 39,
140.
27. Turek, T. C.; Edelstein, R. L.; Gaon, I.; Weller, V. A.; Distefano, M. D. In [32P]-
Labeled Analogs of Farnesyl and Geranylgeranyl Pyrophosphate: Synthesis and
Application in Photoaffinity Labeling Experiments with Protein Prenyltransferases;
Hays, J. R., Melilo, D. G., Eds.; Synth. Appl. Isot. Labelled Compd. 1997, Proc. Int.
Symp., 6th, 1998; John Wiley & Sons Ltd, 1998; p 67.
28. Mayer, M. P.; Prestwich, G. D.; Dolence, J. M.; Bond, P. D.; Wu, H.-y.; Poulter, C.
D. Gene 1993, 132, 41.
29. Dolence, J. M.; Poulter, C. D. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 5008.
30. Dolence, J. M.; Cassidy, P. B.; Mathis, J. R.; Poulter, C. D. Biochemistry 1995, 34,
16687.
31. Mathis, J. R.; Poulter, C. D. Biochemistry 1997, 36, 6367.
32. Rozema, D. B.; Poulter, C. D. Biochemistry 1999, 38, 13138.
33. Gibbs, R. A.; Krishnan, U.; Dolence, J. M.; Poulter, C. D. J. Org. Chem. 1995, 60,
7821.
34. Zahn, T. J.; Eilers, M.; Guo, Z.; Ksebati, M. B.; Simon, M.; Scholten, J. D.; Smith, S.
O.; Gibbs, R. A. J. Am. Chem. Soc. 2000, 122, 7153.
35. Reigard, S. A.; Zahn, T. J.; Haworth, K. B.; Hicks, K. A.; Fierke, C. A.; Gibbs, R. A.
Biochemistry 2005, 44, 11214.
36. Gibbs, R. A.; Zahn, T. J.; Sebolt-Leopold, J. S. Curr. Med. Chem. 2001, 8, 1437.
37. Turek-Etienne, T. C.; Strickland, C. L.; Distefano, M. D. Biochemistry 2003, 42,
3716.
For modeling of the RnPFTaseÁ4b complex, the benzophenone
moiety in 4b was built by modifying the existing FPP present in
the crystal structure of the enzyme (1JCR).46 Once modified, a
5000 step mixed torsional/low-mode conformational search was
conducted with MacroModel (Schrodinger, version 9.6) using the
OPLS forcefield.53,54 The rotatable bonds in the flexible tail of the
ligand were specifically chosen for torsional sampling, and the pro-
tein was frozen throughout the search. The resulting conformation
with the lowest potential energy was chosen for display. For
EcFPPSase, FPP and the 4b were built by modifying the existing
IPP present in the crystal structure of the enzyme (1RQI).47 A con-
formational search was performed as described for RnPFTase and
the resulting conformation with the lowest potential energy was
chosen for display of each ligand. For StSTSase (Pentalenene syn-
thase),55 FPP and 4b were docked in the active site of the crystal
structure of the enzyme (1PS1) using Glide (Schrodinger, version
5.0). A standard precision docking parameter was set and 10,000
ligand poses per docking were run. The resulting conformation
with the lowest docking score was chosen for display for each
ligand.
38. Kale, T. A.; Hsieh, S. A.; Rose, M. W.; Distefano, M. D. Curr. Top. Med. Chem. 2003,
3, 1043.