hydrazine derivatives that could be used to prepare N,N-
dialkyl-N′-arylhydrazines has been described,8 but in those
cases, two or more steps would be needed. On the other hand,
N,N-dialkyl-N′-arylhydrazines are useful synthetic intermedi-
ates,9 and most of them exhibit important biological activities,
acting as inhibitors of ileal bile acid transport,10 herbicides,11
interleukine-8 receptor antagonists,12 antibacterial agents,13
and inhibitors of the coagulation cascade.14
Thus, the development of a simple and general procedure
for the direct preparation of this class of compounds would
be greatly desirable. Hereafter, we report just such a process,
involving the palladium-catalyzed reaction of aryl bromides
2 with N,N-dialkylhydrazine/2LiCl adducts 1 (Scheme 1).
Scheme 1
Figure 1.
to be clearly superior to Cs2CO3 (Table 1, compare entry 4
with entry 5) and to give higher yields than KOBu-t (Table
1, compare entry 4 with entry 6). However, even under the
best conditions, the desired hydrazine derivative was isolated
in moderate yields, one of the main side reactions being the
formation of biphenyl, derived from the reduction of p-
(phenyl)bromobenzene. Though further studies are needed
to provide a detailed mechanism for this reduction reaction,
on the basis of previous studies on the formation of arenes
in palladium-catalyzed amination of aryl bromides16 and the
reduction of σ-alkylpalladium intermediates by tertiary
amines,17 we surmised that the main reaction pathway for
the formation of reduction byproducts might involve coor-
dination of the disubstituted nitrogen atom to the σ-aryl-
palladium intermediate formed in situ. According to this
Initial studies were directed toward finding a general set
of reaction conditions that could be applied to a variety of
N,N-dialkylhydrazines and aryl bromides. N,N-Dimethyl-
hydrazine and p-(phenyl)bromobenzene were selected as the
model system, and the influence of ligands, bases, and LiCl
was examined. Some results from that study are summarized
in Table 1.
Table 1. Ligands, Bases, and LiCl in the Palladium-Catalyzed
Synthesis of N,N-Dimethyl-N′-(p-phenylphenyl)hydrazine 3aa
% yieldb
entry
ligand
dppf
BINAP
MOP
base
hydrazine (equiv) time (h)
of 3a
(10) (a) Lee, L. F.; Banerjee, S. C.; Huang, H. C.; Li, J. J.; Miller, R.
E.; Reitz, D. B.; Tremont, S. J. U.S. Patent 831, 284, 2004; Chem. Abstr.
2004, 140, 111291. (b) Keller, B. T.; Glenn, K. C.; Manning, R. E. U.S.
Patent 831,284, 2001; Chem. Abstr. 2001, 135, 137410. (c) Lee, L. F.;
Banerjee, S. C.; Huang, H.-C.; Li, J. J.; U.S. Patent 109,551, 2000; Chem.
Abstr. 2000, 133, 193089. (d) Reitz, D. B.; Lee, L. F.; Li, J. J.; Huang,
H.-C.; Tremont, S. J.; Miller, R. E.; Baneriee, S. C.; Manning, R. E.; Glenn,
K. C.; Keller, B. T. WO 9840375, 1998; Chem. Abstr. 1998, 129, 260353.
(e) Reitz, D. B.; Lee, L. F.; Li, J. J.; Huang, H.-C.; Tremont, S. J.; Miller,
R. E.; Banerjee, S. C. WO 9733882, 1997; Chem. Abstr. 1997, 127, 307312.
(11) (a) Kajita, S.; Ishii, M.; Satoh, A.; Koguchi, M. WO 2003062195,
2003; Chem. Abstr. 2003, 139, 279230. (b) Sanemitsu, Y.; Tohyama, Y.
WO 2000021936, 2000; Chem. Abstr. 2000, 132, 279230.
(12) Low, J. E.; Trivedi, B. K. WO 9942464, 1999; Chem. Abstr. 1999,
131, 179809.
(13) Ascher, G.; Berner, H.; Hildebrandt, J. WO 2001009095, 2001;
Chem. Abstr. 2001, 134, 147722.
(14) South, M. S.; Parlow, J. J. WO 2001079155, 2001; Chem. Abstr.
2001, 135, 318330.
1
2
3
4
5
6
7
8
9
NaOBu-t Me2NNH2 (1.2)
NaOBu-t Me2NNH2 (1.2)
NaOBu-t Me2NNH2 (1.2)
24
7
8
4
24
12
24
6.5
7
c
50d
11
Xantphos NaOBu-t Me2NNH2 (1.2)
Xantphos Cs2CO3 Me2NNH2 (1.2)
55e
traces
32
Xantphos KOBu-t Me2NNH2 (1.2)
Xantphos NaOBu-t Me2NNH2 (2)
Xantphos NaOBu-t Me2NNH2/2LiCl (2)
40
75f
BINAP
NaOBu-t Me2NNH2/2LiCl (2)
54g
a Unless otherwise stated, reactions were carried out on a 0.563 mmol
scale in 2 mL of toluene at 80 °C under argon using 1 equiv of
p-(phenyl)bromobenzene, N,N-dimethylhydrazine (as shown in table), 0.025
equiv of Pd2(dba)3, 0.05 equiv of bidentate ligand, and 1.4 equiv of base.
b Yields are given for isolated products. c Pd(OAc)2 (0.05 equiv) was used.
d Starting bromide was recovered in 16% yield. e Biphenyl was isolated in
30% yield. f Biphenyl was isolated in 4% yield. g Starting bromide was
recovered in 42% yield.
(15) (a) Kranenburg, M.; van der Burgt, Y. E. M.; Kramer, P. C. J.; van
Leeuwen, P. W. N. M.; Goubitz, K.; Fraanje, J. Organometallics 1995, 14,
3081. For recent reviews on the use of Xantphos ligands in transition metal-
catalyzed reactions, see: (b) van Leeuwen, P. W. N. M.; Kramer, P. C. J.;
Reek, J. N. H.; Dierkes, P. Chem ReV. 2000, 100, 2741. (c) Kramer, P. C.
J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Acc. Chem. Res. 2001, 34,
895.
(16) For some references, see: (a) Beletskaya, I. P.; Bessmertnykh, A.
G.; Guilard, R. Tetrahedron Lett. 1999, 40, 6393. (b) Hamann, B. C.;
Hartwig, J. F. J. Am. Chem. Soc. 1998, 120, 3694. (c) Marcoux, J.-F.;
Wagaw, S.; Buchwald, S. L. J. Org. Chem. 1997, 62, 1568. (d) Driver, M.
S.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 7217. (e) Hartwig, J. F.;
Richards, S.; Baran˜ano, D.; Paul, F. J. Am. Chem. Soc. 1996, 118, 3626.
(f) Guram, A. S.; Rennels, R. A.; Buchwald, S. L. Angew. Chem., Int. Ed.
Engl. 1995, 34, 1348.
The reaction of N,N-dimethylhydrazine with p-(phenyl)-
bromobenzene in the presence of Pd2(dba)3, NaOBu-t, and
BINAP or Xantphos15 (Figure 1) in toluene at 80 °C afforded
similar results (Table 1, entries 2 and 4). NaOBu-t proved
(8) (a) Wolter, M.; Klapars, A.; Buchwald, S. L. Org. Lett. 2001, 3, 3803.
(b) Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999,
121, 10252. (c) Wang, Z.; Skerlj, R. T.; Bridger, G. J. Tetrahedron Lett.
1999, 40, 3543.
(9) Hojo, M.; Masuda, R.; Okada, E.. Synthesis 1990, 481.
1498
Org. Lett., Vol. 7, No. 8, 2005